【題目】在等差數(shù)列 中,
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè)數(shù)列 是首項(xiàng)為1,公比為 的等比數(shù)列,求 的前 項(xiàng)和
【答案】
(1)
設(shè)等差數(shù)列{ }的公差是d,
∵ ,
∴( )-( )=2d=-6,d=-3,
∴ =2 +7d=-23, =-1,
∴數(shù)列{ }的通項(xiàng)公式為 =-3n+2.
(2)
∵數(shù)列 是首項(xiàng)為1,公比為 的等比數(shù)列,
∴ = ,∴ = - =3n-2+ ,
∴ =[1+4+…+(3n-2)]+(1+q+…+ )
當(dāng)q=1時(shí), = = ;
當(dāng)q≠1時(shí), = + .
【解析】(1){ }是等差數(shù)列,已知 ,根據(jù)等差數(shù)列的性質(zhì)求出首項(xiàng) 和公差d,進(jìn)而求出通項(xiàng)公式 ;(2) 是一個(gè)首項(xiàng)為1,公比為q的等差數(shù)列。根據(jù)等差數(shù)列的求和公式求出數(shù)列 的前n項(xiàng)和,然后減去數(shù)列 的前n項(xiàng)和即可。這里需要注意的是公比q要分兩種情況進(jìn)行討論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A,B,C,D,E五輛汽車(chē),其中A、B兩輛汽車(chē)的車(chē)牌尾號(hào)均為1,C、D兩輛汽車(chē)的車(chē)牌尾號(hào)均為2,E車(chē)的車(chē)牌尾號(hào)為6,已知在非限行日,每輛車(chē)可能出車(chē)或不出車(chē),A、B、E三輛汽車(chē)每天出車(chē)的概率均為 ,C、D兩輛汽車(chē)每天出車(chē)的概率均為 ,且五輛汽車(chē)是否出車(chē)相互獨(dú)立,該公司所在地區(qū)汽車(chē)限行規(guī)定如下:
車(chē)牌尾號(hào) | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求該公司在星期一至少有2輛汽車(chē)出車(chē)的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車(chē)的車(chē)輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,則實(shí)數(shù)a的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選做題)[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓E: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 .
(Ⅰ)若橢圓E的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦距成等差數(shù)列,求橢圓E的離心率;
(Ⅱ)若橢圓E過(guò)點(diǎn)A(0,﹣2),直線AF1 , AF2與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B,C,且△ABC的面積為 ,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實(shí)數(shù) 的值;
(2)若 恒成立,求實(shí)數(shù) 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中P﹣ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 ,若存在,請(qǐng)求出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個(gè)連續(xù)的自然數(shù)?若存在,求△ABC的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖像上存在關(guān)于x軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com