【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過(guò)35微克/立方米, 的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年30天的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),將這30天的測(cè)量結(jié)果繪制成樣本頻率分布直方圖如圖.

(Ⅰ)求圖中的值;

(Ⅱ)由頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.

【答案】(Ⅰ); (Ⅱ)見(jiàn)解析.

【解析】試題分析:

(1)利用頻率分布直方圖小圖形的面積之和為1求解實(shí)數(shù)a的值即可

(2)由頻率分布直方圖中估算樣本平均數(shù),將其與35進(jìn)行比較大小即可得到結(jié)論.

試題解析:

(Ⅰ)由題意知,則.

(Ⅱ)(微克/立方米),

因?yàn)?/span>,所以該居民區(qū)的環(huán)境質(zhì)量需要改善.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)).

(1)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(2)求函數(shù)的極值點(diǎn);

(3)令, ,設(shè), , 是曲線(xiàn)上相異三點(diǎn),其中.求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、BC所對(duì)的邊分別為a、bc,已知a=1,b=2, cosC=

I求△ABC的周長(zhǎng);II)求cosA﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= n,
(1)求通項(xiàng)公式an的表達(dá)式;
(2)令bn=an2n1 , 求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l的方程為3x+4y﹣12=0,求直線(xiàn)l'的方程,使得:
(1)l'與l平行,且過(guò)點(diǎn)(﹣1,3);
(2)l'與l垂直,且l'與兩軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬(wàn)件)之間大體滿(mǎn)足關(guān)系: .(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠(chǎng)方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量x為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知底面,異面直線(xiàn)所成角等于.

(1)求證: 平面平面;

(2)求直線(xiàn)和平面所成角的正弦值;

(3) 在棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的正切值為?若存在,指出點(diǎn)在棱上的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)設(shè)g(x)=2 cos2x+f(x),g(α)= + ,α∈( , ),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【河北省衡水中學(xué)2017屆高三上學(xué)期五調(diào)】已知橢圓,圓的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作互相垂直的兩條直線(xiàn),且交橢圓兩點(diǎn),直線(xiàn)交圓兩點(diǎn),且的中點(diǎn),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案