解答:
解:設(shè)P(x
0,y
0)是函數(shù)g(x)=|log
2|x-1||的圖象上任一點(diǎn),
則當(dāng)x=2-x
0時(shí),y=|log
2|(2-x
0)-1||=|log
2|x
0-1||=y
0∴點(diǎn)Q(2-x
0,y
0)也在函數(shù)g(x)=|log
2|x-1||的圖象上.
由于點(diǎn)P、Q關(guān)于直線x=1對(duì)稱,
∴函數(shù)g(x)=|log
2|x-1||的圖象關(guān)于直線x=1對(duì)稱.
當(dāng)x=1時(shí),函數(shù)f(x)=cos(πx)=cosπ=-1
∴函數(shù)f(x)=cos(πx)的圖象關(guān)于直線x=1對(duì)稱.
∴函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象的交點(diǎn)關(guān)于直線x=1對(duì)稱.
當(dāng)1<x<2時(shí),函數(shù)f(x)=cos(πx)單調(diào)遞增,f(1)=-1,f(2)=1;
而函數(shù)g(x)=|log
2|x-1||=-log
2(x-1)單調(diào)遞減,g(2)=0,
故在區(qū)間(1,2)內(nèi),函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象有且只一個(gè)交點(diǎn);
當(dāng)2≤x≤3時(shí),函數(shù)f(x)=cos(πx)單調(diào)遞減,f(2)=1,f(3)=-1,
而函數(shù)g(x)=|log
2|x-1||=log
2(x-1)單調(diào)遞增,g(2)=0,
故在區(qū)間(2,3)內(nèi),函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象有且只一個(gè)交點(diǎn);
當(dāng)x>3時(shí),g(x)=|log
2|x-1||=log
2(x-1)>1,而函數(shù)f(x)=cos(πx)≤1,
故在區(qū)間(3,+∞)內(nèi),函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象無(wú)交點(diǎn).
綜上所述,函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象共有4個(gè)交點(diǎn),關(guān)于直線x=1對(duì)稱,
∴函數(shù)f(x)=cos(πx)與函數(shù)g(x)=|log
2|x-1||的圖象所有交點(diǎn)的橫坐標(biāo)之和為4.