數(shù)列{an}的前n項和Sn滿足:t(Sn+1+1)=(2t+1)S n n∈N*.
(1)求證{an}是等比數(shù)列;
(2)若{an}的公比為f(t),數(shù)列{bn}滿足:b1=1,bn+1=f(數(shù)學(xué)公式),求{bn}的通項公式;
(3)定義數(shù)列{cn}為:cn=數(shù)學(xué)公式,求{cn}的前n項和Tn,并求數(shù)學(xué)公式

解:(1)由:t(Sn+1+1)=(2t+1)Sn,
得t(Sn+1)=(2t+1)Sn-1
相減得:=2+,
∴{an}是等比數(shù)列.
(2)bn+1=f()=2+bn,
∴bn+1-bn=2,b1=1,
得bn=2n-1.
(3)cn===
∴Tn==
=.(5分)
分析:(1)將Sn與an的遞推關(guān)系仿寫一個新的等式,兩個式子相減;利用等比數(shù)列的定義證得{an}是等比數(shù)列.
(2)利用等差數(shù)列的定義及等差數(shù)列的通項公式求出bn
(3)據(jù)數(shù)列的通項公式的特點:是分式形式,且分子是常數(shù),分母是等差數(shù)列兩項的乘積,所以利用裂項法求出數(shù)列的前n項和,求出和的極限值.
點評:本題考查已知和與項的遞推關(guān)系求通項常采用的方法是仿寫作差;考查求數(shù)列的前n項和的方法:關(guān)鍵是看通項的特點:當(dāng)通項為分式形式,且分子是常數(shù),分母是等差數(shù)列兩項的乘積是采用的方法是裂項求和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當(dāng)n≥2時,pan<an-1
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
,
1
3
,
2
3
1
4
,
2
4
3
4
,
1
5
,
2
5
,
3
5
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案