一個幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A、18+2
5
B、24+2
5
C、24+4
5
D、36+4
5
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)三視圖判斷幾何體是直四棱柱,且四棱柱的底面為等腰梯形,棱柱的高為2,底面梯形的上底邊長為2,下底邊長為4,高為2,利用勾股定理求出腰為
12+22
=
5
,代入棱柱的表面積公式計算.
解答: 解:由三視圖知幾何體是直四棱柱,且四棱柱的底面為等腰梯形,棱柱的高為2,
底面梯形的上底邊長為2,下底邊長為4,高為2,腰為
12+22
=
5
,
∴幾何體的表面積S=(2+4+2
5
)×2+2×
2+4
2
×2=24+4
5

故選:C.
點(diǎn)評:本題考查了由三視圖求幾何體的表面積,判斷三視圖的數(shù)據(jù)所對應(yīng)的幾何量是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足
.
zi
1i
.
=1+i,則|z+1-3i|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,則以下命題為真的是( 。
A、若a>b,則
1
a
1
b
B、若a>|b|,則
1
a
1
b
C、若a>b,則a2>b2
D、若a>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)F(x)=ex滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,2
2
)
B、(-∞,2
2
]
C、(0,2
2
]
D、(2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x-1|<1},B={x| 
1-x
x
≤0}
,則A∩(∁UB)=( 。
A、(0,1)
B、[0,1)
C、(1,2)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A,B,C,A={直線},B={平面},C=A∪B,若a∈A,b∈B,c∈C,給出下列命題:
a∥b
c∥b
⇒a∥c
;
a⊥b
c⊥b
⇒a∥c
;
a⊥b
c∥b
⇒a⊥c

其中正確的命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個頂點(diǎn)為A(a,0)、B(0,b),右焦點(diǎn)為F,且F到直線AB的距離等于F到原點(diǎn)的距離,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+8x,g(x)=x-ln(x+1)
(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);
(Ⅱ)是否存在實(shí)數(shù)k,對任意的x∈[0,+∞),不等式g(x)≤8kx-kf(x)恒成立?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}{bn}中,a 1=1,b1=2,且an+1+(-1)nan=bn,n∈N*,設(shè)數(shù)列{an}{bn}的前n項(xiàng)和分別為An和Bn
(1)若數(shù)列{an}是等差數(shù)列,求An和Bn
(2)若數(shù)列{bn}是公比q(q≠1)為等比數(shù)列:
    ①求A2013;
    ②是否存在實(shí)數(shù)m,使A4n=m•a4n對任意自然數(shù)n∈N*都成立,若存在,求m的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案