(2012•湖南)已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖象上取定點A(x1,f(x1)),B(x2,f(x2))(x1<x2),記直線AB的斜率為K,證明:存在x0∈(x1,x2),使f′(x0)=K恒成立.
分析:(1)根據(jù)題意,對f(x)求導(dǎo)可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna與x>lna兩種情況討論可得f(x)取最小值為f(lna)=a-alna,令g(t)=t-tlnt,對其求導(dǎo)可得g′(t)=-lnt,分析可得當(dāng)t=1時,g(t)取得最大值1,因此當(dāng)且僅當(dāng)a=1時,a-alna≥1成立,即可得答案;
(2)根據(jù)題意,由直線的斜率公式可得k=
ex2-ex1
x2-x1
-a,令φ(x)=f′(x)-k=ex-
ex2-ex1
x2-x1
,可以求出φ(x1)與φ(x2)的值,令F(t)=et-t-1,求導(dǎo)可得F′(t)=et-1,
分t>0與t<0討論可得F(t)的最小值為F(0)=0,則當(dāng)t≠0時,F(xiàn)(t)>F(0)=0,即et-t-1>0,進而討論可得φ(x1)<0、φ(x2)>0,結(jié)合函數(shù)的連續(xù)性分析可得答案.
解答:解:(1)f′(x)=ex-a,
令f′(x)=0,解可得x=lna;
當(dāng)x<lna,f′(x)<0,f(x)單調(diào)遞減,當(dāng)x>lna,f′(x)>0,f(x)單調(diào)遞增,
故當(dāng)x=lna時,f(x)取最小值,f(lna)=a-alna,
對一切x∈R,f(x)≥1恒成立,當(dāng)且僅當(dāng)a-alna≥1,①
令g(t)=t-tlnt,則g′(t)=-lnt,
當(dāng)0<t<1時,g′(t)>0,g(t)單調(diào)遞增,當(dāng)t>1時,g′(t)<0,g(t)單調(diào)遞減,
故當(dāng)t=1時,g(t)取得最大值,且g(1)=1,
因此當(dāng)且僅當(dāng)a=1時,①式成立,
綜上所述,a的取值的集合為{1}.
(2)根據(jù)題意,k=
f(x2)-f(x1)
x2-x1
=
ex2-ex1
x2-x1
-a,
令φ(x)=f′(x)-k=ex-
ex2-ex1
x2-x1
,
則φ(x1)=-
ex1
x2-x1
[ex2-x1-(x2-x1)-1],
φ(x2)=
ex2
x2-x1
[ex1-x2-(x1-x2)-1],
令F(t)=et-t-1,則F′(t)=et-1,
當(dāng)t<0時,F(xiàn)′(t)<0,F(xiàn)(t)單調(diào)遞減;當(dāng)t>0時,F(xiàn)′(t)>0,F(xiàn)(t)單調(diào)遞增,
則F(t)的最小值為F(0)=0,
故當(dāng)t≠0時,F(xiàn)(t)>F(0)=0,即et-t-1>0,
從而ex2-x1-(x2-x1)-1>0,且
ex1
x2-x1
>0,則φ(x1)<0,
ex1-x2-(x1-x2)-1>0,
ex2
x2-x1
>0,則φ(x2)>0,
因為函數(shù)y=φ(x)在區(qū)間[x1,x2]上的圖象是連續(xù)不斷的一條曲線,所以存在x0∈(x1,x2),使φ(x0)=0,
即f′(x0)=K成立.
點評:本題考查導(dǎo)數(shù)的應(yīng)用,涉及最大值、最小值的求法以及恒成立問題,是綜合題;關(guān)鍵是理解導(dǎo)數(shù)的符號與單調(diào)性的關(guān)系,并能正確求出函數(shù)的導(dǎo)數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)已知復(fù)數(shù)z=(3+i)2(i為虛數(shù)單位),則|
.
z
|=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)已知兩條直線l1:y=m 和 l2:y=
8
2m+1
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,l2 與函數(shù)y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當(dāng)m變化時,
b
a
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點A(x1,f(x1)),B(x2,f(x2)(x1<x2),記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)已知雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,點P (2,1)在C 的漸近線上,則C的方程為( 。

查看答案和解析>>

同步練習(xí)冊答案