如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱的側(cè)棱與底面垂直,底面是等腰直角三角形,,側(cè)棱,分別是與的中點(diǎn),點(diǎn)在平面上的射影是的垂心
(1)求證:;
(2)求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使且,得一簡單組合體如圖2示,已知分別為的中點(diǎn).
圖1 圖2
(1)求證:平面;
(2)求證: ;
(3)當(dāng)多長時(shí),平面與平面所成的銳二面角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.
(Ⅰ)證明: //平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰直角三角形中,,,分別是上的點(diǎn),,
為的中點(diǎn).將沿折起,得到如圖2所示的四棱錐,其中.
(Ⅰ) 證明:平面;
(Ⅱ) 求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.
(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面底面,若、分別為、的中點(diǎn).
(Ⅰ) 求證://平面;
(Ⅱ) 求證:平面平面;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com