已知直線,則直線至多可以確定平面的個數(shù)為      (   )
A.1 B.2C.3D.4
C.
兩平行直線可以確定一個平面,當三條平行直線不共面時可以確定三個平面.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

試證:若兩個平行平面中的一個平面垂直于第三個平面,
則另一個平面也垂直于第三個平面.
已知:如圖,,為三個平面,,.求證:
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCDA1B1C1D1中,EF分別是棱BC,C1D1的中點,求證;EF∥平面BB1D1D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知SA、SB、SC是共點于S的且不共面的三條射線,∠BSA=∠ASC=45°,∠BSC=60°,求證:平面BSA⊥平面SAC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四面體SABC中,SA⊥底面ABC,△ABC是銳角三角形,H是點A在面SBC上的射影.求證:H不可能是△SBC的垂心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

考察正方體6個面的中心,甲從這6個點中任意選兩個點連成直線,乙也從這6個點中任意選兩個點連成直線,則所得的兩條直線相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為A1B1、B1C1、C1D1的中點.
(1)求異面直線AG與BF所成角的余弦值;
(2)求證:AG平面BEF;
(3)試在棱BB1上找一點M,使DM⊥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=2,AA1=
3
,AD=2
2
,P為C1D1的中點,M為BC的中點.
(Ⅰ)證明:AM⊥PM;
(Ⅱ)求AD與平面AMP所成角的正弦值;
(Ⅲ)求二面角P-AM-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,己知平行四邊形ABCD中,∠BAD=60°,AB=6,AD=3,G為CD中點,現(xiàn)將梯形ABCG沿著AG折起到AFEG.
(I)求證:直線CE直線BF;
(II)若直線GE與平面ABCD所成角為
π
6

①求證:FG⊥平面ABCD:
②求二面B一EF一A的平面角的余弦值.

查看答案和解析>>

同步練習冊答案