對(duì)于函數(shù)f(x)=
x1+|x|
,下列結(jié)論正確的是

①f(x)在(-∞,+∞)上不是單調(diào)函數(shù)
②?m∈(0,1),使得方程f(x)=m有兩個(gè)不等的實(shí)數(shù)解;
③?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn);
④?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2).
分析:①判斷函數(shù)是奇函數(shù),再用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性即可;
②利用函數(shù)在實(shí)數(shù)集R上具有單調(diào)性,即可得到結(jié)論;
③0是方程f(x)-kx=0的一個(gè)根<而當(dāng)x>0,k>1時(shí),方程
x
1+x
-kx
=0無解,即函數(shù)g(x)無零點(diǎn),同理x<0時(shí),亦無解,故③不正確;
④由②的單調(diào)性即可判斷出
解答:解:函數(shù)f(x)=
x
1+|x|
的定義域?yàn)閷?shí)數(shù)集R,圖象如圖所示
①?x∈R,f(-x)+f(x)=
-x
1+|-x|
+
x
1+|x|
=0
函數(shù)是實(shí)數(shù)集R上的奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱
∵x>0時(shí),f(x)=
x
1+x
,∴f′(x)=
1
(1+x)2
>0
∴函數(shù)是實(shí)數(shù)集R上的單調(diào)增函數(shù),故①不正確;
②由①知,m∈(0,1),方程f(x)=m有唯一實(shí)數(shù)解,故②不正確;
③∵g(0)=f(0)-0=0,∴x=0是函數(shù)g(x)的一個(gè)零點(diǎn);
當(dāng)x>0時(shí),若?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在區(qū)間(0,+∞)上有零點(diǎn),則方程
x
1+x
-kx
=0必有解,此方程化為kx=1-k,
∵x=
1-k
k
<0,∴此方程無解,∴不存在k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在區(qū)間(0,+∞)上有零點(diǎn);
同理不存在k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在區(qū)間(-∞,0)上有零點(diǎn),故③不正確;
④由②可知:函數(shù)f(x)=
x
1+|x|
,在實(shí)數(shù)集R上單調(diào)遞增,因此?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2),故④正確.
綜上可知:只有④正確.
故答案為:④.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì),考查學(xué)生分析解決問題的能力,由已知函數(shù)得出其奇偶性和單調(diào)性及畫出圖形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

下列說法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

下列說法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都樹德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022

對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);

④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案