如圖所示,已知點(diǎn)P是⊙O外一點(diǎn),PS、PT是⊙O的兩條切線,過點(diǎn)P作⊙O
的割線PAB,交⊙O于A、B兩點(diǎn),與ST交于點(diǎn)C,求證:

利用切割線定理再由三角形相似即可證.

解析試題分析:作OD垂直PB于D,連接SD、OS、PO,則有P、S、D、O四點(diǎn)共圓,PA+PB=2PD,又由切割線定理可知PS2=PA·PB,又易證三角形PSC與三角形PCS相似可得,PS2=PC·PD,即有
PC·PD=PC· (PA+PB)=PA·PB,從而得證.
考點(diǎn):切割線定理;勾股定理;相交弦定理.
點(diǎn)評:本題主要考查了切割線定理以及三角形相似的證明,注意對比例式的變形是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△內(nèi)接于⊙,,直線切⊙于點(diǎn),弦,相交于點(diǎn).

(Ⅰ)求證:△≌△;
(Ⅱ)若,求長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是以為直徑的上一點(diǎn),于點(diǎn),過點(diǎn)的切線,與的延長線相交于點(diǎn)的中點(diǎn),連結(jié)并延長與相交于點(diǎn),延長的延長線相交于點(diǎn).

(1)求證:;
(2)求證:的切線;
(3)若,且的半徑長為,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB =AC,直線MN切⊙O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.
(1)求證:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB為⊙O的直徑,過點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長線交BC于點(diǎn)D。

(1)求證:CE2 = CD · CB;
(2)若AB = BC = 2,求CECD的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
如下圖,ABCD是圓的兩條平行弦,BE//AC,BECDE、交圓于F,過A點(diǎn)的切線交DC的延長線于PPC=ED=1,PA=2.

(I)求AC的長;
(II)求證:BEEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足.

(1)求實數(shù)間滿足的等量關(guān)系式;
(2)求面積的最小值;
(3)求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點(diǎn)c為o 上不同于A、B的一點(diǎn),AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結(jié)BD、CD.

(I )求證:BD平分
(II)求證:AH•BH=AE•HC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分10分)

圓的兩條弦AB、CD交于點(diǎn)F,從F點(diǎn)引BC的平行線和直線
DA的延長線交于點(diǎn)P,再從點(diǎn)P引這個圓的切線,切點(diǎn)是Q
求證:PF=PQ.

查看答案和解析>>

同步練習(xí)冊答案