偶函數(shù)f(x)在(-∞,0)上是增函數(shù),問它在(0,+∞)是增函數(shù)還是減函數(shù)?能否用函數(shù)單調(diào)性的定義證明你的結(jié)論?
因?yàn)榕己瘮?shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;
且f(x)在(-∞,0)上是增函數(shù),
故f(x)在(0,+∞)是減函數(shù).
證明如下:若0<x1<x2<+∞,那么-∞<-x2<-x1<0.
由于偶函數(shù)在(-∞,0)上是增函數(shù),故有:f(-x2)<f(-x1
又根據(jù)偶函數(shù)的性質(zhì)可得:f(-x1)=f(x1),f(-x2)=f(x2
綜上可得:f(x1)>f(x2
故f(x)在(0,+∞)上是減函數(shù)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln
x+1
x-1

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)對(duì)于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域都是[-3,3],且它們?cè)趚∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)<0的解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
a
a2-1
(ax-a-x),(a>0且a≠1).
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)當(dāng)函數(shù)f(x)的定義域?yàn)椋?1,1)時(shí),求使f(1-m)+f(1-m2)<0成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

偶函數(shù)f(x)在區(qū)間[0,+∞)的圖象如右,則函數(shù)f(x)的單調(diào)增區(qū)間為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)t使得對(duì)于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),則稱f(x)為M上的t高調(diào)函數(shù).如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是 ______.如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在(-1,1)上的偶函數(shù)f(x)在(0,1)上單調(diào)遞增,則滿足f(2x-1)<f(x)的x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

奇函數(shù)y=f(x)定義在[-1,1]上,且是減函數(shù),若f(1-a)+f(1-2a)>0,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則f(1)和f(-10)的大小關(guān)系為(  )
A.f(1)>f(-10)B.f(1)<f(-10)
C.f(1)=f(-10)D.f(1)和f(-10)關(guān)系不定

查看答案和解析>>

同步練習(xí)冊(cè)答案