已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),設F(x)=

(1)若f(-1)=0,且對任意實數(shù)x,f(x)≥0恒成立,求F(x)的表達式;

(2)在(1)的條件下,函數(shù)g(x)=f(x)-kx在[-2,2]上單調(diào),求實數(shù)k的取值范圍.

答案:
解析:

  解:(1)因為f(-1)=0,所以b=a+1,且a≠0.由f(x)≥0恒成立,知a>0,且Δ=b2-4a=(a+1)2-4a=(a-1)2≤0,所以a=1,從而f(x)=x2+2x+1,

所以F(x)=

  (2)由(1)知f(x)=x2+2x+1,所以g(x)=f(x)-kx=x2+(2-k)x+1=+1-,由g(x)在[-2,2]上單調(diào),知-≤-2,或-≥2,得k≤-2,或k≥6.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數(shù)學卷(解析版) 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.

(1)求函數(shù)f(x)的解析式;

(2)設k>1,解關于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題

(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數(shù)學 題型:解答題

(本小題滿分l2分)

已知函數(shù)f(x)=a

 

(1)求證:函數(shù)yf(x)在(0,+∞)上是增函數(shù);

 

(2)f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數(shù)學文卷 題型:解答題

( (本小題滿分13分)

已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆黑龍江省高一期末考試文科數(shù)學 題型:解答題

(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數(shù)的定義域   (2)討論函數(shù)f(X)的單調(diào)性

 

查看答案和解析>>

同步練習冊答案