設(shè)一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
(1)求橢圓的方程;
(2)求證:三點共線.

(1)(2)詳見解析.

解析試題分析:(1)利用橢圓的定義和幾何性質(zhì);(2)直線與圓錐曲線相交問題,可以設(shè)而不求,聯(lián)立直線與橢圓方程,利用韋達定理結(jié)合題目條件來證明.
試題解析:(1)由題知,,∴,3分
∴橢圓.4分
(2) 設(shè)點,由(1)知
∴直線的方程為,∴.5分
,,8分[來源:Z,xx,k.Com]

由方程組
化簡得:,,.
10分
,
三點共線.12分
考點:1.橢圓的標準方程;2.直線與圓錐曲線相交問題;3.韋達定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A,B,C是橢圓Wy2=1上的三個點,O是坐標原點.
(1)當(dāng)點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知F1,F2分別為橢圓C1=1(a>b>0)的上下焦點,其中F1是拋物線C2x2=4y的焦點,點MC1C2在第二象限的交點,且|MF1|=.

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線lyk(xt)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,左右焦點分別為,且.
(1)求橢圓C的方程;
(2)過點的直線與橢圓相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,已知點,是動點,且的三邊所在直線的斜率滿足
(1)求點的軌跡的方程;
(2)若是軌跡上異于點的一個點,且,直線交于點,問:是否存在點,使得的面積滿足?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂在坐標原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設(shè)線段的中垂線與軸交于點 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點分別為為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案