【題目】春季氣溫逐漸攀升,病菌滋生傳播快,為了確保安全開學(xué),學(xué)校按30名學(xué)生一批,組織學(xué)生進行某種傳染病毒的篩查,學(xué)生先到醫(yī)務(wù)室進行血檢,檢呈陽性者需到防疫部門]做進一步檢測.學(xué)校綜合考慮了組織管理、醫(yī)學(xué)檢驗?zāi)芰Φ榷嗳f面的因素,根據(jù)經(jīng)驗,采用分組檢測法可有效減少工作量,具體操作如下:將待檢學(xué)生隨機等分成若干組,先將每組的血樣混在一起化驗,若結(jié)果呈陰性,則可斷定本組血樣合格,不必再做進一步的檢測;若結(jié)果呈陽性,則本組中的每名學(xué)生再逐個進行檢測.現(xiàn)有兩個分組方案:方案一:將30人分成5組,每組6人;方案二:將30人分成6組,每組5人.已知隨機抽一人血檢呈陽性的概率為05%,且每個人血檢是否呈陽性相互獨立.

(Ⅰ)請幫學(xué)校計算一下哪一個分組方案的工作量較少?

(Ⅱ)已知該傳染疾病的患病率為045%,且患該傳染疾病者血檢呈陽性的概率為999%,若檢測中有一人血檢呈陽性,求其確實患該傳染疾病的概率.(參考數(shù)據(jù):(,

【答案】(Ⅰ)方案一工作量更少.(Ⅱ)0.8991

【解析】

(Ⅰ)設(shè)方案一中每組的化驗次數(shù)為X,則X的取值為1、7,分別求出相應(yīng)的概率,求出,從而方案一的化驗總次數(shù)的期望值為:次.設(shè)方案二中每組的化驗次數(shù)為Y,則Y的取值為1、6,分別求出相應(yīng)的概率,求出.從而方案二的化驗總次數(shù)的期望為次.由此能求出方案一工作量更少.

(Ⅱ)設(shè)事件A:血檢呈陽性,事件B:患疾病,由題意得,,,由此利用條件概率能求出該職工確實患該疾病的概率.

解:(1)設(shè)方案一中每組的化驗次數(shù)為X,則X的取值為1,7,

X的分布列為:

X

1

7

P

0970

0030

故方案一的化驗總次數(shù)的期望值為:次.

設(shè)方案二中每組的化驗次數(shù)為Y,則Y的取值為1,6,

,

Y的分布列為:

Y

1

6

P

0975

0025

∴方案二的化驗總次數(shù)的期望為次.

,

∴方案一工作量更少.

2)設(shè)事件A:血檢呈陽性,事件B:患疾病,

則由題意得,,

由條件概率公式可得,

∴該職工確實患該疾病的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)直線的交點為,當(dāng)變化時點的軌跡為曲線.

1)求出曲線的普通方程;

2)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點為曲線上的動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款手機的使用時間,研究人員對該款手機進行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:

并對不同年齡層的市民對這款手機的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購買該款手機

不愿意購買該款手機

總計

40歲以下

600

40歲以上

800

1000

總計

1200

1)根據(jù)圖中的數(shù)據(jù),試估計該款手機的平均使用時間;

2)請將表格中的數(shù)據(jù)補充完整,并根據(jù)表中數(shù)據(jù),判斷是否有999%的把握認為愿意購買該款手機市民的年齡有關(guān).

參考公式:,其中

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素數(shù)猜想的一個弱化形式.孿生素數(shù)猜想是希爾伯特在二十世紀初提出的23個數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線

(Ⅰ)求曲線被直線截得的弦長;

(Ⅱ)與直線垂直的直線與曲線相切于點,求點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)當(dāng)時,證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的單調(diào)遞增區(qū)間為( )

A.(0,2)B.[0,1)C.(﹣∞,1]D.(01]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),若對,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列對任意都有(其中、、是常數(shù)) .

(Ⅰ)當(dāng),時,求;

(Ⅱ)當(dāng),時,若,求數(shù)列的通項公式;

(Ⅲ)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.當(dāng),,時,設(shè)是數(shù)列的前項和,,試問:是否存在這樣的“封閉數(shù)列”,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案