【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為(
A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

【答案】A
【解析】解:由三視圖可知幾何體為從邊長為4的正方體切出來的三棱錐A﹣BCD.作出直觀圖如圖所示: 其中A,C,D為正方體的頂點,B為正方體棱的中點.
∴SABC= =4,SBCD= =4.
∵AC=4 ,AC⊥CD,∴SACD= =8
由勾股定理得AB=BD= =2 ,AD=4
∴cos∠ABD= =﹣ ,∴sin∠ABD=
∴SABD= =4
∴幾何體的表面積為8+8 +4
故選A.

由三視圖可知幾何體為從邊長為4的正方體切出來的三棱錐.作出直觀圖,計算各棱長求面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a為實數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調遞增,則a的取值范圍為(
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)的導函數(shù),討論的零點個數(shù);

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只藥用昆蟲的產卵數(shù)與一定范圍內的溫度有關,現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度

21

23

24

27

29

32

產卵數(shù)/個

6

11

20

27

57

77

(1)若用線性回歸模型,求關于的回歸方程(精確到0.1);

(2)若用非線性回歸模型求的回歸方程為,且相關指數(shù)

①試與(1)中的線性回歸模型相比,用說明哪種模型的擬合效果更好.

②用擬合效果好的模型預測溫度為時該種藥用昆蟲的產卵數(shù)(結果取整數(shù)).

附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計為;相關指數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設關于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,記函數(shù)f(x)= ,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩個正方形ABCDADEF所在平面互相垂直,設M、N分別是BDAE的中點,那么;CDE;;MN,CE異面其中正確結論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,側面SAB與側面SAC均為等邊三角形,∠BAC=90°,O為BC中點. (Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A﹣SC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:

轉速(轉/秒)

8

10

12

14

16

每小時生產有缺點的零件數(shù)(件)

5

7

8

9

11

(1)如果有線性相關關系,求回歸方程;

(2)若實際生產中,允許每小時生產的產品中有缺點的零件最多有1個,那么機器的運轉速度應控制在什么范圍內?參考公式:,

查看答案和解析>>

同步練習冊答案