【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +
科目:高中數(shù)學 來源: 題型:
【題目】已知a為實數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調遞增,則a的取值范圍為( )
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)為的導函數(shù),討論的零點個數(shù);
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只藥用昆蟲的產卵數(shù)與一定范圍內的溫度有關,現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度 | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數(shù)/個 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用線性回歸模型,求關于的回歸方程(精確到0.1);
(2)若用非線性回歸模型求關的回歸方程為,且相關指數(shù)
①試與(1)中的線性回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預測溫度為時該種藥用昆蟲的產卵數(shù)(結果取整數(shù)).
附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計為;相關指數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設關于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,記函數(shù)f(x)= ,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設M、N分別是BD和AE的中點,那么;面CDE;;MN,CE異面其中正確結論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,側面SAB與側面SAC均為等邊三角形,∠BAC=90°,O為BC中點. (Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A﹣SC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:
轉速(轉/秒) | 8 | 10 | 12 | 14 | 16 |
每小時生產有缺點的零件數(shù)(件) | 5 | 7 | 8 | 9 | 11 |
(1)如果對有線性相關關系,求回歸方程;
(2)若實際生產中,允許每小時生產的產品中有缺點的零件最多有1個,那么機器的運轉速度應控制在什么范圍內?參考公式:, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com