【題目】設Sn為等差數(shù)列{an}的前n項的和a1=1, ,則數(shù)列 的前2017項和為(
A.
B.
C.
D.

【答案】A
【解析】解:Sn為等差數(shù)列{an}的前n項的和a1=1,設公差為d,∵ = =a1+1008d﹣(a1+1007d)=d,
∴an=a1+(n﹣1)d=n,Sn=n1+ 1= ,
= =2( ),
則數(shù)列 的前2017項和為2[1﹣ + + +…+ )=2(1﹣ )= ,
故選:A.
【考點精析】本題主要考查了等差數(shù)列的性質的相關知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且 ,求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求時,求的單調區(qū)間;

(2)討論在定義域上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓兩焦點 ,并且經過點
(1)求橢圓的方程;
(2)若過點A(0,2)的直線l與橢圓交于不同的兩點M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列函數(shù)是否存在零點,如果存在,請求出.
(1) ;
(2) ;
(3) ;
(4) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,角α(0≤α≤π)的始邊為x軸的非負半軸,終邊與單位圓的交點為A,將OA繞坐標原點逆時針旋轉 至OB,過點B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)y=f(α)的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點A,B分別是橢圓 的長軸的左右端點,點F為橢圓的右焦點,直線PF的方程為: 且PA⊥PF.
(1)求直線AP的方程;
(2)設點M是橢圓長軸AB上一點,點M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=2cos(x﹣ )的圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象(
A.關于點(﹣ ,0)對稱
B.關于點( ,0)對稱
C.關于直線x=﹣ 對稱
D.關于直線x= 對稱

查看答案和解析>>

同步練習冊答案