設函數(shù)f(x)=
14
x4+bx2+cx+d,當x=t1時,f(x)有極小值.
(1)若b=-6時,函數(shù)f(x)有極大值,求實數(shù)c的取值范圍;
(2)在(1)的條件下,若存在實數(shù)c,使函數(shù)f(x)在閉區(qū)間[m-2,m+2]上單調遞增,求實數(shù)m的取值范圍.
分析:(1)由于:“方程h(x)=0有三個互異的實根.”,通過列出表格,結合導數(shù)的零點問題討論即可;
(2)存在性問題,只需即(x-2)2(x+4)>0(*)在區(qū)間[m-2,m+2]上恒成立,最后轉化為子集問題即可.
解答:解:(1)因為f(x)=
1
4
x4+bx2+cx+d,
所以h(x)=f′(x)=x3-12x+c.
由題設,方程h(x)=0有三個互異的實根.
考察函數(shù)h(x)=x3-12x+c,則h′(x)=0,得x=±2.
精英家教網(wǎng)
所以
c+16>0
c-16<0
故-16<c<16.

(2)存在c∈(-16,16),
使f′(x)≥0,即x3-12x≥-c,(*)
所以x3-12x>-16,
即(x-2)2(x+4)>0(*)在區(qū)間[m-2,m+2]上恒成立.(7分)
所以[m-2,m+2]是不等式(*)解集的子集.
所以
m-2>-4
m+2<2
或m-2>2,
即-2<m<0,或m>4.(9分)
點評:本題綜合考查了函數(shù)的導數(shù),零點,極值與恒成立問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx-ax+1,其中a為常數(shù).
(1)求函數(shù)f(x)的單調區(qū)間.
(2)求證:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=exμ(x),
(I)若μ(x)=x2-
52
x+2的極小值;
(Ⅱ)若μ(x)=x2+ax-3-2a,設a>0,函數(shù)g(x)=(a2+14)ex+4,若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)下列命題中,正確的是
(1)(2)(3)
(1)(2)(3)

(1)平面向量
a
b
的夾角為60°,
a
=(2,0)
,|
b
|=1
,則|
a
+
b
|
=
7

(2)在△ABC中,A,B,C的對邊分別為a,b,c,若acosC,bcosB,ccosA成等差數(shù)列則B=
π
3

(3)O是△ABC所在平面上一定點,動點P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過△ABC的內心
(4)設函數(shù)f(x)=
x-[x],x≥0
f(x+1),x<0
其中[x]表示不超過x的最大整數(shù),如[-1.3]=-2,[1.3]=1,則函數(shù)y=f(x)-
1
4
x-
1
4
不同零點的個數(shù)2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
2
•(
1
4
x-1+a•(
1
2
x-a+2
(1)若a=4,解不等式f(x)>0;
(2)若方程f(x)=0有負數(shù)根,求a的取值范圍.

查看答案和解析>>

同步練習冊答案