8.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是(  )
A.4cm2B.$\frac{43}{2}$cm2C.23cm2D.24cm2

分析 由三視圖知該幾何體是一個正方體截去一個三棱錐所得的組合體,累加各個面的面積,可求出幾何體的表面積;

解答 解:根據(jù)三視圖可知幾何體是:
一個正方體截去一個三棱錐P-ABC所得的組合體,
直觀圖如圖所示:其中A、B是棱的中點,
正方體的棱長是2cm,則PA=PB=$\sqrt{5}$cm,AB=$\sqrt{2}$cm,
∴△PAB邊AB上的高線為$\sqrt{{\sqrt{5}}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$(cm),
∴該幾何體的表面積:
S=6×2×2-2×$\frac{1}{2}$×1×2-$\frac{1}{2}$×1×1+$\frac{1}{2}$×$\sqrt{2}$×$\frac{3\sqrt{2}}{2}$=23(cm2),
故選:C

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)滿足f(x)=f(-x),且當x∈(-∞,0)時,f(x)+xf'(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),$c=({log_2}\frac{1}{8})•f({log_2}\frac{1}{8})$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c<a<bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義函數(shù)序列:${f_1}(x)=f(x)=\frac{x}{1-x}$,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),則函數(shù)y=f2017(x)的圖象與曲線$y=\frac{1}{x-2017}$的交點坐標為( 。
A.$({-1,-\frac{1}{2018}})$B.$({0,\frac{1}{-2017}})$C.$({1,\frac{1}{-2016}})$D.$({2,\frac{1}{-2015}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在區(qū)間[0,1]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.某四面體的三視圖如圖所示,則此四面體的四個面中面積最大的面的面積等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.集合 A={x|-1<x<1},B={x|x(x-2)>0},那么 A∩B=( 。
A.{x|-1<x<0}B.{x|-1<x<2}C.{x|0<x<1}D.{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC所在平面內(nèi)一點P,滿足$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,延長BP交AC于點D,若$\overrightarrow{AD}=λ\overrightarrow{AC}$,則λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.cos240°的值等于-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案