精英家教網 > 高中數學 > 題目詳情
給出下列命題:
(1)若
a
b
,
b
c
,則
a
c
;
(2)有向線段就是向量,向量就是有向線段;
(3)零向量的方向是任意的,零向量與任何一向量都共線;
(4)
a
2
=|
a
|2

其中正確的命題個數( 。
分析:(1)取
b
=
0
,不一定成立;
(2)有向線段的起點、終點是固定的,而向量的起點可自由移動,故二者不是一回事;
(3)課本上就是這樣規(guī)定的;
(4)利用數量積的定義即可判斷出.
解答:解:(1)取
b
=
0
,不一定有
a
c
,故(1)不正確;
(2)向量可用有向線段來表示,但是有向線段的起點、終點是固定的,而向量的起點可自由移動,故二者不是一回事,所以不正確;
(3)零向量的方向是任意的,零向量與任何一向量都共線,課本上就是這樣規(guī)定的,故正確;
(4)
a
2
=
a
a
=|
a
| |
a
|cos0
=|
a
|2
,故正確.
綜上可知:(3)、(4)正確.
故選C.
點評:正確理解向量的基本概念和數量積的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
(1)已知可導函數f(x),x∈D,則函數f(x)在點x0處取得極值的充分不必要條件是f′(x0)=0,x0∈D.
(2)已知命題P:?x∈R,sinx≤1,則¬p:?x∈R,sinx>1.
(3)已知命題p:
1
x 2-3x+2
>0
,則¬p:
1
x 2-3x+2
≤0

(4)給定兩個命題P:對任意實數x都有ax2+ax+1>0恒成立;Q:關于x的方程x2-x+a=0有實數根.如果P∧Q為假命題,P∨Q為真命題,則實數a的取值范圍是(-∞,0)∪(
1
4
,4)

其中所有真命題的編號是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•萬州區(qū)一模)已知函數f(x)=|x2-2ax+b|(x∈R),給出下列命題:
(1)f(x)不可能是偶函數;
(2)當f(0)=f(2)時,f(x)的圖象必關于直線x=1對稱;
(3)若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數;
(4)f(x)有最小值b-a2
其中正確的命題的序號是
(3)
(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:①y=1是冪函數;②函數y=|x+2|-2x在R上有3個零點;③
x-1
(x-2)≥0
的解集為[2,+∞);④當n≤0時,冪函數y=xn的圖象與兩坐標軸不相交;其中正確的命題是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

某班級有男生20人,女生30人,從中抽取10個人的樣本,恰好抽到了4個男生、6個女生.給出下列命題:
(1)該抽樣可能是簡單的隨機抽樣;
(2)該抽樣一定不是系統(tǒng)抽樣;
(3)該抽樣女生被抽到的概率大于男生被抽到的概率.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設a1,a2,a3,a4是等差數列,且滿足1<a1<3,a3=4,若bn=2an,給出下列命題:(1)b1,b2,b3,b4是一個等比數列; (2)b1<b2; (3)b2>4; (4)b4>32; (5)b2b4=256.其中真命題的個數是( 。

查看答案和解析>>

同步練習冊答案