設(shè)A={x|-1≤x<2},B={x|x<a},若A∩B≠,則a的范圍是

[  ]

A.a(chǎn)<2
B.a(chǎn)>-2
C.a(chǎn)>-1
D.-1<a≤2
答案:C
解析:

在數(shù)軸上表示出即可.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ln(1+x)
x
(x>0)

(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使得關(guān)于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范圍,若不存在,試說明理由;
(Ⅲ)求證:(1+
1
n
)n<e,n∈N*
(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)A={x|x≥1},U=R,求CuA=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(x,1)
b
=(2,-1)
c
=(x-m,m-1)
(x∈R,m∈R).
(Ⅰ)若
a
b
的夾角為鈍角,求x的取值范圍;
(Ⅱ)解關(guān)于x的不等式|
a
+
c
|<|
a
-
c
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①“x=2”是“x2=4”的充分不必要條件;
②設(shè)A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,則實數(shù)t的取值范圍為[3,+∞);
③若log2x+logx2≥2,則x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命題P:對任意的x∈R,函數(shù)y=cos(2x-
π
3
)
的遞減區(qū)間為[kπ-
π
12
,kπ+
12
](k∈Z)
,命題q:存在x∈R,使tanx=1,則命題“p且q”是真命題.
其中真命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案