已知關(guān)于x的方程x2-2ax+a+2=0的兩根滿足1<x1<4且1<x2<4,求實(shí)數(shù)a的取值范圍.
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用方程和函數(shù)之間的關(guān)系,轉(zhuǎn)化為一元二次函數(shù)根的分布問題,即可得到結(jié)論.
解答: 解:設(shè)f(x)=x2-2ax+a+2,
∵方程x2-2ax+a+2=0的兩根滿足1<x1<4且1<x2<4,
△≥0
f(1)>0
f(4)>0
1<-
-2a
2
<4

4a2-4(a+2)≥0
f(1)=3-a>0
f(4)=18-7a>0
1<a<4
,∴
a≥2或a≤-1
a<3
a<
18
7
1<a<4
,
即2≤a<
18
7

∴實(shí)數(shù)a的取值范圍是2≤a<
18
7
點(diǎn)評(píng):本題主要考查一元二次方程根的分布問題,將方程轉(zhuǎn)化為函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知∠α=
π
6
,∠β的終邊與∠α的終邊關(guān)于直線y=x對(duì)稱,則∠β的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈R,則復(fù)數(shù)z=2(cosθ+sinθ)+(sinθ-cosθ)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)組成的圖形是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)1<x<2,則
lnx
x
、(
lnx
x
)2
、
lnx2
x2
的大小關(guān)系是(  )
A、(
lnx
x
)2
lnx
x
lnx2
x2
B、
lnx
x
<(
lnx
x
)2
lnx2
x2
C、(
lnx
x
)2
lnx2
x2
lnx
x
D、
lnx2
x2
<(
lnx
x
)2
lnx
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ),(x∈R)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,如果x1,x2∈(-
π
6
π
3
),且f(x1)=f(x2),則f(
x1+x2
2
)等于(  )
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:log3(6x-9)=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1x≤0
-2xx>0
  求f[f(0)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=sin
6
,試求:
(1)f(1)+f(2)+…+f(102)的值;
(2)f(1)•f(3)•f(5)•f(7)•…•f(101)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:2≤x<4,命題q:3m-1≤x≤-m,且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案