已知直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A、B兩點.
(1)求實數(shù)a的取值范圍;
(2)當實數(shù)a取何值時,以線段AB為直徑的圓經過坐標原點.

解(1)聯(lián)立方程組.  
∵直線l與曲線C有兩個交點A、B,
,即.            
∴實數(shù)a的取值范圍是.      
(2)設點A、B的坐標為(x1,y1)、(x2,y2).           
由(1)可知,
∵以線段AB為直徑的圓經過原點,
,即x1x2+y1y2=0.                         
又y1=ax1+1,y2=ax2+1,
∴x1x2+(ax1+1)(ax2+1)=0,
,解得a=±1(都滿足(1)求出的條件)    

∴a=±1時,以線段AB為直徑的圓經過坐標原點.    


分析:(1)把直線與雙曲線方程聯(lián)立消去y,利用二次項非0,且判別式大于0求得a的范圍.
(2)把直線l的方程與雙曲線的方程聯(lián)立消去y,根據(jù)判別式大于0求得a的范圍,根據(jù)OA⊥OB,推斷出y1y2=-x1x2.根據(jù)韋達定理表示出x1x2.進而根據(jù)直線方程表示出y1y2,代入y1y2=-x1x2.求得a.
點評:本題主要考查了雙曲線的簡單性質,直線與雙曲線的位置關系.考查了學生綜合分析問題和推理的能力,基本的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網設a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點Q1的橫坐標為a1(0<a1<a).從C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標構成數(shù)列{an}.
(Ⅰ)試求an+1與an的關系,并求{an}的通項公式;
(Ⅱ)當a=1,a1
1
2
時,證明
n
k=1
(ak-ak+1)ak+2
1
32
;
(Ⅲ)當a=1時,證明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+b,其中實數(shù)a,b∈{-1,1,2}.
(Ⅰ)求可構成的不同的直線l的條數(shù);
(Ⅱ)求直線l:y=ax+b與圓x2+y2=1沒有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1-a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=-2|x-1|;②y=x2;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A、B兩點.
(1)求實數(shù)a的取值范圍;
(2)當實數(shù)a取何值時,以線段AB為直徑的圓經過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1-a(a∈R),若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段的長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出的三條曲線方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直線l的“絕對曲線”有
 
.(填寫全部正確選項的序號)

查看答案和解析>>

同步練習冊答案