如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。

(1)求證:OB⊥AC;

(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。

 

(1)見解析;(2)。

【解析】

試題分析:(1)要證,可轉(zhuǎn)化為證OB⊥平面ABC,而根據(jù)圓的切線性質(zhì)、圓柱母線定義可知,即OB⊥平面ABC;(2)三棱錐A-BOC的體積等于,在RtΔOA B中,AB=,由題意知,故,代入公式即可。

試題解析: (1)連結(jié)OB,由圓的切線性質(zhì)有OB⊥BC,圓柱母線性質(zhì)有,又,

∴OB⊥平面ABC,∴OB⊥AC。

(2)在RtΔOA B中,AB=

又∵∠ACB就是AC與底面⊙O所成角,,

考點(diǎn):(1)圓的切線性質(zhì)、圓柱母線定義;(2)線面垂直判定及性質(zhì)定理的應(yīng)用;(3)三棱錐體積公式。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

某商場舉行的“三色球”購物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)邚难b有個(gè)紅球、個(gè)藍(lán)球、6個(gè)白球的袋中任意摸出4個(gè)球.根據(jù)摸出個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:

獎(jiǎng)級

摸出紅、藍(lán)球個(gè)數(shù)

獲獎(jiǎng)金額

一等獎(jiǎng)

3紅1藍(lán)

200元

二等獎(jiǎng)

3紅1白

50元

三等獎(jiǎng)

2紅1藍(lán)或2紅2白

10元

 

其余情況無獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級.

(1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率;

(2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額的分布列與期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

是虛數(shù)單位,復(fù)數(shù)滿足,則的虛部為_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二4月階段測試數(shù)學(xué)試卷(解析版) 題型:填空題

已知直線和直線,則拋物線上的動(dòng)點(diǎn)到直線的距離之和的最小值為___________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二4月階段測試數(shù)學(xué)試卷(解析版) 題型:填空題

若直線經(jīng)過點(diǎn),方向向量為,則直線的點(diǎn)方向式方程是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

一個(gè)半徑為1的小球在一個(gè)內(nèi)壁棱長為的正四面體封閉容器內(nèi)可向各個(gè)方向自由運(yùn)動(dòng),則該小球表面永遠(yuǎn)不可能接觸到的容器內(nèi)壁的面積是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

將三個(gè)1、三個(gè)2、三個(gè)3填入3×3的方格中,要求每行、每列都沒有重復(fù)數(shù)字,則不同的填寫方法共有 種。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科預(yù)測二(解析版) 題型:選擇題

過拋物線x2=2py(p>0)焦點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,則拋物線上A、B兩點(diǎn)處的切線斜率之積是( )

A.P2 B.-p2 C.-1 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科預(yù)測一(解析版) 題型:選擇題

曲線在點(diǎn)處的切線與直線互相垂直,則a為( )

A.4 B.2 C.1 D.3

 

查看答案和解析>>

同步練習(xí)冊答案