若f(x)是定義在[-1,1]上的減函數(shù),則不等式f(x)-f(4x+1)>0的解集是
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)-f(4x+1)>0得f(x)>f(4x+1),然后根據(jù)函數(shù)的單調(diào)性建立條件關(guān)系即可得到結(jié)論.
解答: 解:不等式f(x)-f(4x+1)>0等價為f(x)>f(4x+1),
∵f(x)是定義在[-1,1]上的減函數(shù),
-1≤x≤1
-1≤4x+1≤1
x<4x+1
,則
-1≤x≤1
-
1
2
≤x≤0
x>-
1
3

解得-
1
3
<x≤0,
即不等式的解集為(-
1
3
,0].
故答案為:(-
1
3
,0]
點評:本題主要考查不等式的解法,根據(jù)函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足:an+2Sn-1=0,a1=1,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PB⊥平面ABCD.
(l)若AC=6,BD=8,PB=3,求三棱錐A一PBC的體積;
(2)若點E是DP的中點,證明:BD⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A是圓ρ=2cosθ的圓心,則點A到直線ρcosθ+
3
ρsinθ=7的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x)•f(x+2)=2014,若f(0)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球的半徑為5,球面被互相垂直的兩個平面所截,得到的兩個圓的公共弦長為2
3
,若其中一個圓的半徑為4,則另一個圓的半徑為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
2x+1
x+1
≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線
x=3+tcos230°
y=-1+tsin230°
(t為參數(shù))的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.6,則P(0<ξ<1)=(  )
A、0.4B、0.3
C、0.2D、0.1

查看答案和解析>>

同步練習冊答案