(2013•大連一模)設(shè)離心率e=
1
2
的橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,P是x軸正半軸上一點,以PF1為直徑的圓經(jīng)過橢圓M短軸端點,且該圓和直線x+
3
y+3=0
相切,過點P的直線與橢圓M相交于相異兩點A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點A、B關(guān)于x軸對稱,直線BC交x軸與點Q,求
QA
QC
的取值范圍.
分析:(Ⅰ)設(shè)以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點N,則|NF1|=a,由e=
1
2
可得a=2c,由此可得∠NF1P=
π
3
,再由|PF1|的長可判斷F2為圓的圓心,根據(jù)圓與直線x+
3
y+3=0
相切,可解得c值,從而可求得a,b;
(Ⅱ)設(shè)點A(x1,y1),C(x2,y2),易知點B(x1,-y1),設(shè)直線PA的方程為y=k(x-3),代入橢圓方程消掉y得x的二次方程,由△>0得k2范圍,由點斜式寫出直線BC的方程,令y=0,由韋達定理可得Q點橫坐標,利用向量數(shù)量積運算及韋達定理可把
QA
QC
表示為k的函數(shù),由k2的范圍即可求得
QA
QC
的范圍;
解答:解:(Ⅰ)設(shè)以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點N,
∴|NF1|=a,∵e=
1
2
,∴a=2c,
∠NF1P=
π
3
,|PF1|=2a.
∴F2(c,0)是以|PF1|為直徑的圓的圓心,
∵該圓和直線x+
3
y+3=0
相切,
2c=
|c+3|
1+(
3
)
2
,解得c=1,a=2,b=
3
,
∴橢圓M的方程為:
x2
4
+
y2
3
=1

(Ⅱ)設(shè)點A(x1,y1),C(x2,y2),則點B(x1,-y1),
設(shè)直線PA的方程為y=k(x-3),
聯(lián)立方程組
x2
4
+
y2
3
=1
y=k(x-3).
,消掉y,化簡整理得(4k2+3)x2-24k2x+36k2-12=0,
由△=(24k22-4•(3+4k2)•(36k2-12)>0,得0<k2
3
5

x1+x2=
24k2
4k2+3
,x1x2=
36k2-12
4k2+3

直線BC的方程為:y+y1=
y2+y1
x2-x1
(x-x1)

令y=0,則x=
y1x2+y2x1
y1+y2
=
2x1x2-3(x1+x2)
x1+x2-6
=
72k2-24
4k2+3
-
72k2
4k2+3
24k2
4k2+3
-6
=
4
3

∴Q點坐標為(
4
3
,0)

QA
QC
=(x1-
4
3
)(x2-
4
3
)+y1y2=(x1-
4
3
)(x2-
4
3
)+k2(x1-3)(x2-3)

=(1+k2)x1x2-(3k2+
4
3
)(x1+x2)+9k2+
16
9

=(1+k2)•
36k2-12
4k2+3
-(3k2+
4
3
)•
24k2
4k2+3
+9k2+
16
9

=
19k2-12
4k2+3
+
16
9
=
235
36
-
105
16k2+12

0<k2
3
5

QA
QC
∈(-
20
9
,
5
3
)
點評:本題考查直線、橢圓方程及其位置關(guān)系,考查向量的數(shù)量積運算,考查函數(shù)思想,考查學生分析解決問題的能力,綜合性強,難度較大,對能力要求較高.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)設(shè)集合A={2,lnx},B={x,y},若A∩B={0},則y的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)選修4-5:不等式選講
已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
(Ⅰ)當a=1時求不等式f(x)≥0的解集.
(Ⅱ)如果函數(shù)y=f(x)恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個零點,若非負實數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則
b+2
a+1
的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)球面上有四個點P、A、B、C,若PA,PB,PC兩兩互相垂直,且PA=PB=PC=1,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)設(shè)復數(shù)z=
1-i
1+i
,則z為( 。

查看答案和解析>>

同步練習冊答案