如圖所示,已知四邊形ABCD的對角線互相平分,點O是對角線ACBD的交點.求證:四邊形ABCD是平行四邊形.

答案:
解析:

證明:四邊形ABCD的對角線ACBD互相平分,

∴ 點O既是AC中點,又是BD的中點

  ∴ 、

  ∴ 

  又因,

  ∴ ,所以ABCD

  故四邊形ABCD是平行四邊形.

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:044

如圖所示,已知四邊形ABCD的對角線互相平分,點O是對角線ACBD的交點.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡中學 高一數(shù)學(下冊)、第五章 平面向量單元(5.1~5.5)測試卷 題型:044

如圖所示,已知四邊形OADB是以向量,為邊的平行四邊形,其中,.試以向量a,b為一組基底,表示出向量、

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖所示,已知四邊形ABCDEADMMDCF都是邊長為a的正方形,點PQ分別是EDAC的中點,求:

1)異面直線PMFQ所成的角;

2)四面體P-EFB的體積;

3)異面直線PMFQ的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江西贛州四所重點中學高三上學期期末聯(lián)考文數(shù)學試卷(解析版) 題型:解答題

如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點。

(Ⅰ)求證:平面FGH⊥平面AEB;

(Ⅱ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案