已知f(x)=|x+20|-|16-x|.(x∈R).
(1)解不等式f(x)≥0;
(2)若關(guān)于x的不等式f(x)≥m的解集是非空集合,求實數(shù)m的取值范圍.
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)不等式即|x+20|-|16-x|≥0,即 (x+20)2≥(x-16)2,由此求得不等式的解集.
(2)由題意可得 m≤fmax(x),根據(jù)絕對值三角不等式求得f(x)的最大值為36,從而求得m的范圍.
解答: 解:(1)不等式即|x+20|-|16-x|≥0,即 (x+20)2≥(x-16)2,
求得x≥-2,故不等式的解集為[-2,+∞).
(2)∵關(guān)于x的不等式f(x)≥m的解集是非空集合,∴m≤fmax(x),
根據(jù)f(x)=|x+20|-|16-x|≤|x+20-(x-16)|=36,
∴fmax(x)=36,∴m≤36.
點評:本題主要考查絕對值不等式的解法,絕對值三角不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3

(1)若函數(shù)y=f(x)的圖象關(guān)于直線x=a(a>0)對稱,求a的最小值;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)若存在x0∈[-
π
12
,
π
6
],使得mf(x0)-2=0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-x,g(x)=lnx-2x.
(Ⅰ)若函數(shù)h(x)=f(x)+g(x)時,求函數(shù)h(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)F(x)=f(x)+ag(x),求函數(shù)F(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐E-ABCD中,△ABD為正三角形,EB=ED,CB=CD.
(1)求證:EC⊥BD;
(2)若AB⊥BC,M,N分別為線段AE,AB的中點,求證:平面DMN∥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+(b-8)x-a-ab,且f(x)>0的解集為(-3,2).
(1)求f(x)的解析式;
(2)當(dāng)x>-1時,求y=
f(x)-21
x+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(6,1),B(0,-7),C(-2,-3)為平面直角坐標(biāo)系的三點.
(1)試判斷△ABC的形狀;
(2)求線段AB的垂直平分線的方程;
(3)若點P為線段AB的垂直平分線上的任一點,試判斷
CP
AB
的值是否為一個常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的對角線相交于點O,G是平行四邊形ABCD所在平面外一點,且GA=GC,GB=GD,求證:GO⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函數(shù)f(x)=
a
b
+|
b
|2
(1)求函數(shù)y=f(x)的周期和對稱軸方程;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:關(guān)于x的不等式x2+2ax+2>0對一切x∈R恒成立;q:函數(shù)f(x)=-(3-2a)x是減函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案