分析 解決本題的關(guān)鍵是水塔中的水不空又不會(huì)使水溢出,其存水量的平衡與進(jìn)水量、選擇的進(jìn)水級(jí)別與進(jìn)水時(shí)間相關(guān),而出水量有生活用水與工業(yè)用水兩部分構(gòu)成,故水塔中水的存量是一個(gè)關(guān)于進(jìn)水級(jí)別與用水時(shí)間的函數(shù).因此設(shè)進(jìn)水量選第n級(jí),t小時(shí)后水塔中水的剩余量為:y=100+10nt-10t-100$\sqrt{t}$,且0≤t≤16.解0<y≤300,-$\frac{10}{t}$+$\frac{10}{\sqrt{t}}$+1<n≤$\frac{20}{t}$+$\frac{10}{\sqrt{t}}$+1對(duì)一切t∥(0,16]恒成立,即可得出結(jié)論.
解答 解析:設(shè)水塔進(jìn)水量選擇第n級(jí),在t時(shí)刻水塔中的水容量y等于水塔中的存水量100噸加進(jìn)水量10nt噸,減去生產(chǎn)用水10t噸,在減去工業(yè)用水W=100$\sqrt{t}$噸,即y=100+10nt-10t-100$\sqrt{t}$(0<t≤16);…(4分)
若水塔中的水量既能保證該廠用水,又不會(huì)使水溢出,則一定有0<y≤300.
即0<100+10nt-10t-100$\sqrt{t}$≤300,…(6分)
所以-$\frac{10}{t}$+$\frac{10}{\sqrt{t}}$+1<n≤$\frac{20}{t}$+$\frac{10}{\sqrt{t}}$+1對(duì)一切t∥(0,16]恒成立.…(8分)
因?yàn)?$\frac{10}{t}$+$\frac{10}{\sqrt{t}}$+1=$-10(\frac{1}{\sqrt{t}}-\frac{1}{2})^{2}+\frac{7}{2}$≤$\frac{7}{2}$,$\frac{20}{t}$+$\frac{10}{\sqrt{t}}$+1=$20(\frac{1}{\sqrt{t}}+\frac{1}{4})^{2}-\frac{1}{4}$≥$\frac{19}{4}$,…(11分)
所以$\frac{7}{2}≤n≤\frac{19}{4}$,即n=4.即進(jìn)水選擇4級(jí).…(12分)
點(diǎn)評(píng) 本題以函數(shù)在實(shí)際生活中的應(yīng)用為例,考查了導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,屬于中檔題.著重考查數(shù)學(xué)建模的基本思想,怎么樣把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而用已有的數(shù)學(xué)知識(shí)求這個(gè)問(wèn)題的解.在解題過(guò)程中運(yùn)用了化二元為一元,化為基本初等函數(shù)的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sinα)>f(sinβ) | B. | f(sinα)<f(cosβ) | C. | f(cosα)<f(cosβ) | D. | f(sinα)>f(cosβ) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com