【題目】設(shè),,分別為內(nèi)角,的對(duì)邊.已知,且,則( )

A. 1B. 2C. D.

【答案】D

【解析】

由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡(jiǎn)已知可得cosA的值,進(jìn)而根據(jù)余弦定理可求a的值.

asinA2bcosAcosC+2ccosAcosB,

∴由正弦定理可得:sin2A2sinBcosAcosC+2sinCcosAcosB,

可得sin2A2cosAsinBcosC+sinCcosB)=2cosAsinB+C)=2cosAsinA,

A0π),sinA0,

sinA2cosA,即tanA2cosA,

b,c2,

∴由余弦定理可得a

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019531日晚,大連市某重點(diǎn)高中舉行一年一度的畢業(yè)季燈光表演.學(xué)生會(huì)共安排6名高一學(xué)生到學(xué)校會(huì)議室遮擋4個(gè)窗戶(hù),要求兩端兩個(gè)窗戶(hù)各安排1名學(xué)生,中間兩個(gè)窗戶(hù)各安排兩名學(xué)生,不同的安排方案共有(

A.720B.360C.270D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿足下列條件的曲線方程

1)已知橢圓以坐標(biāo)軸為對(duì)稱(chēng)軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,點(diǎn)在該橢圓上,求橢圓的方程.

2)已知雙曲線的離心率為,焦點(diǎn)是,,求雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的曲線標(biāo)準(zhǔn)方程.

1)虛軸長(zhǎng)為,離心率為的雙曲線的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在觀察物體時(shí),從物體上、下沿引出的光線在人眼處所成的夾角叫視角.研究表明,視角在范圍內(nèi)視覺(jué)效果最佳.某大廣場(chǎng)豎立的大屏幕,屏幕高為20米,屏幕底部距離地面11.5米.站在大屏幕正前方,距離屏幕所在平面米處的某人,眼睛位置距離地面高度為1.5米,觀察屏幕的視角為(情景示意圖如圖所示).

1)為探究視覺(jué)效果,請(qǐng)從,中選擇一個(gè)作為,并求的表達(dá)式;

2)根據(jù)(1)的選擇探究是否有達(dá)到最佳視角效果的可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若.

(。┣蠛瘮(shù)的極小值;

(ⅱ)求函數(shù)在點(diǎn)處的切線方程.

(Ⅱ)若函數(shù)上有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)||,實(shí)數(shù)m,n滿足0mn,且f(m)f(n),若f(x)[m2n]上的最大值為2,則________.

查看答案和解析>>

同步練習(xí)冊(cè)答案