【題目】如圖所示,在四棱錐S-ABCD中,四邊形ABCD是菱形,,,點PQ,M分別是線段SD,PD,AP的中點,點N是線段SB上靠近B的四等分點.

1)若R在直線MQ上,求證:平面ABCD

2)若平面ABCD,求平面SAD與平面SBC所成的銳二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)利用面面平行的判定定理、面面平行的性質(zhì)定理即可證出.

2)以D為坐標原點,建立空間直角坐標系,不妨設,求出平面SBC的一個法向量與平面SAD的一個法向量,利用向量的數(shù)量積即可求解.

1)依題意,,故,

平面ABCD,平面ABCD,故平面ABCD;

因為,故,

平面ABCD平面ABCD,故平面ABCD;

因為,故平面平面ABCD;

因為平面QMN,故平面ABCD;

2)如圖,

D為坐標原點,建立如圖所示空間直角坐標系,不妨設,

,,,

,,

設平面SBC的一個法向量為,則,

,可得

易知平面SAD的一個法向量,

設平面SAD與平面SBC所成銳二面角為,則,

∴平面SAD與平面SBC所成銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】,是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點MN.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設曲線上一點到焦點的距離為3

1)求曲線C方程;

2)設PQ為曲線C上不同于原點O的任意兩點,且滿足以線段PQ為直徑的圓過原點O,試問直線PQ是否恒過定點?若恒過定點,求出定點坐標;若不恒過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.

1)試判斷函數(shù)是否是“L函數(shù)”;

2)若函數(shù)為“L函數(shù)”,求實數(shù)a的取值范圍;

(3)若函數(shù)L函數(shù),且,求證:對任意,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,直線交橢圓,兩點.

1)若點滿足為坐標原點),求弦的長;

2)若直線的斜率不為0且過點,為點關于軸的對稱點,點滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)上有定義,實數(shù)滿足.在區(qū)間上不存在最小值,則稱在區(qū)間上具有性質(zhì)P.

1)當,且在區(qū)間上具有性質(zhì)P,求常數(shù)C的取值范圍;

2)已知,且當時,,判別在區(qū)間上是否具有性質(zhì)P

3)若對于滿足的任意實數(shù),在區(qū)間上具有性質(zhì)P,且對于任意,當時,有:,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)某省的高考改革方案,考生應在3門理科學科(物理、化學、生物)和3門文科學科(歷史、政治、地理)的6門學科中選擇3門學科參加考試.根據(jù)以往統(tǒng)計資料,1位同學選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學科是相互獨立的.

1)求1位考生至少選擇生物、物理兩門學科中的1門的概率;

2)某校高二段400名學生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時選擇生物、物理兩門學科的概率.

查看答案和解析>>

同步練習冊答案