【題目】已知偶函數(shù),當(dāng)時(shí),,若為銳角三角形的兩個(gè)內(nèi)角,則( )

A. B.

C. D.

【答案】B

【解析】

根據(jù)題意,由函數(shù)的解析式可得fx)在(-1,0)上為減函數(shù),結(jié)合函數(shù)的奇偶性可得fx)在(0,1)上為增函數(shù),又由α,β為銳角三角形的兩個(gè)內(nèi)角分析可得sinα>sin(90°﹣β)=cosβ,結(jié)合函數(shù)的單調(diào)性分析可得答案.

根據(jù)題意,當(dāng)x∈(﹣1,0)時(shí),fx)=2x=(x,則fx)在(0,1)上為減函數(shù),

又由fx)為偶函數(shù),則fx)在(0,1)上為增函數(shù),

若α,β為銳角三角形的兩個(gè)內(nèi)角,則α+β>90°,則α>90°﹣β,則有sinα>sin(90°﹣β)=cosβ,

則有f( sinα)>f(cosβ),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,命題方程表示焦點(diǎn)在軸上的橢圓,命題方程表示雙曲線(xiàn).

(1)若命題是真命題,求實(shí)數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代城市大多是棋盤(pán)式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線(xiàn)距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義,兩點(diǎn)間的直角距離為:.

1)在平面直角坐標(biāo)系中,寫(xiě)出所有滿(mǎn)足到原點(diǎn)的直角距離2格點(diǎn)的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

2)求到兩定點(diǎn)、直角距離和為定值的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.(在以下三個(gè)條件中任選一個(gè)做答)

,;

,,

,,.

3)寫(xiě)出同時(shí)滿(mǎn)足以下兩個(gè)條件的格點(diǎn)的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).

①到,兩點(diǎn)直角距離相等;

②到,兩點(diǎn)直角距離和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,棱長(zhǎng)為2,M,N分別為A1B,AC的中點(diǎn).

(1)證明:MN//B1C;

(2)求A1B與平面A1B1CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著我國(guó)汽車(chē)消費(fèi)水平的提高,二手車(chē)流通行業(yè)得到迅猛發(fā)展.某汽車(chē)交易市場(chǎng)對(duì)2017年成交的二手車(chē)交易前的使用時(shí)間(以下簡(jiǎn)稱(chēng)“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車(chē)中隨機(jī)選取一輛,該車(chē)的使用年限在”為事件試估計(jì)的概率;

(2)根據(jù)該汽車(chē)交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖2,其中(單位:年)表示二手車(chē)的使用時(shí)間,(單位:萬(wàn)元)表示相應(yīng)的二手車(chē)的平均交易價(jià)格.由散點(diǎn)圖看出,可采用作為二手車(chē)平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類(lèi)型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車(chē)交易市場(chǎng)對(duì)使用8年以?xún)?nèi)(含8年)的二手車(chē)收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含8年)的二手車(chē)收取成交價(jià)格的傭金.在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車(chē)交易市場(chǎng)對(duì)成交的每輛車(chē)收取的平均傭金.

附注:①對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為;

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,的中點(diǎn),將沿直線(xiàn)翻折成,連結(jié)的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的序號(hào)是_______.

①存在某個(gè)位置,使得;

②翻折過(guò)程中,的長(zhǎng)是定值;

③若,則;

④若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線(xiàn)性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線(xiàn)距離不超過(guò)),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;

(2)有一種植戶(hù)準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計(jì)劃收獲后能全部售出,價(jià)格為10元,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個(gè)交叉點(diǎn)(直線(xiàn)的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的邊長(zhǎng)和直角三角形的直角邊長(zhǎng)都為,已知該梯形地塊周邊無(wú)其他樹(shù)木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的分布列與數(shù)學(xué)期望.

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選題)設(shè)正實(shí)數(shù)滿(mǎn)足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)滿(mǎn)足,且為偶函數(shù),若內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案