【題目】已知數(shù)列滿足,且.

(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)若記為滿足不等式的正整數(shù)的個數(shù),設,求數(shù)列的最大項與最小項的值.

【答案】(1)見解析;(2)最大項為,最小項為.

【解析】試題分析:(Ⅰ)兩邊取倒數(shù),移項即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當為奇數(shù)時,單調(diào)遞減,;當為偶數(shù)時單調(diào)遞增,綜上的最大項為,最小項為.

試題解析:(Ⅰ)由于,,則

,則,即為常數(shù)

,∴數(shù)列是以1為首項,為公比的等比數(shù)列

從而,.

(Ⅱ),

從而

為奇數(shù)時,,單調(diào)遞減,;

為偶數(shù)時,單調(diào)遞增,

綜上的最大項為最小項為.

型】解答
結(jié)束】
22

【題目】已知向量, ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.

(Ⅰ)求的解析式;

(Ⅱ)若關于的方程有實數(shù)解,求的取值范圍.

【答案】(1);(2).

【解析】試題分析:(Ⅰ)由平面向量數(shù)量積公式可得利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得,利用區(qū)間上單調(diào)遞減,可得,從而可得函數(shù)解析式(Ⅱ)原方程可化為,可得,整理,等價于有解,利用一元二次方程根的分布求解即可.

試題解析:(Ⅰ) ,∴

,此時單增,不合題意,∴

,∴,單減,符合題意

(Ⅱ),,

方程方程即為

,得,于是

原方程化為,整理,等價于有解

解法一

(1),方程為;

(2)上有解上有解,問題轉(zhuǎn)化為求函數(shù)上的值域,,,

,單調(diào)遞減,單調(diào)遞增,∴的取值范圍是

上有實數(shù)解

解法二

(1),解得不符合題意,所以

(2),方程上有解;

①方程在上恰有一解;

②方程在上恰有兩解

綜上所述,的范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2OAD的中點,射線OPOA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結(jié)論:

;

②任意,都有;

③任意,都有.

其中正確結(jié)論的序號是__________. (把所有正確結(jié)論的序號都填上).

【答案】①②

【解析】試題分析::如圖,當時, 相交于點,,則

,∴①正確;:由于對稱性, 恰好是正方形的面積,

,∴②正確;:顯然是增函數(shù),∴③錯誤.

考點:函數(shù)性質(zhì)的運用.

型】填空
結(jié)束】
17

【題目】化簡

1

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對數(shù)的底數(shù).
(1)設g(x)是函數(shù)f(x)的導函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,證明:e﹣2<a<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) )的最大值為 ,最小值為 .

(1)求 的值;

(2)將函數(shù) 圖象向右平移 個單位后,再將圖象上所有點的縱坐標擴大到原來的 倍,橫坐標不變,得到函數(shù) 的圖象,求方程 的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)設F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a>0且a≠1,函數(shù)f(x)=x2-(a+1)xalnx.

(1)當a=2時,求曲線yf(x)在(3,f(3))處切線的斜率;

(2)求函數(shù)f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行 統(tǒng)計,樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā) 放生活補貼,標準如下:①80歲及以上長者每人每月發(fā)放生活補貼200元;②80歲以下 老人每人每月發(fā)放生活補貼120元;③不能自理的老人每人每月額外發(fā)放生活補貼100 元.試估計政府執(zhí)行此計劃的年度預算.

查看答案和解析>>

同步練習冊答案