【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
【答案】
證明:(Ⅰ)取AD的中點(diǎn)E,連接PE,BE,BD.
∵PA=PD=DA,四邊形ABCD為菱形,且∠BAD=60°,
∴△PAD和△ABD為兩個(gè)全等的等邊三角形,
則PE⊥AD,BE⊥AD,∴AD⊥平面PBE,
又PB平面PBE,∴PB⊥AD;
(Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=,則PB2=PE2+BE2 ,
∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD;
以點(diǎn)E為坐標(biāo)原點(diǎn),分別以EA,EB,EP所在直線(xiàn)為x,y,z軸,建立如圖所示空間直角坐標(biāo)系,
則E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),
則=(1,0,),=(﹣1,,0),
由題意可設(shè)平面APD的一個(gè)法向量為=(0,1,0);
設(shè)平面PDC的一個(gè)法向量為=(x,y,z),
由 得:,
令y=1,則x=,z=﹣1,∴=(,1,﹣1);
則=1,∴cos<,>===,
由題意知二面角A﹣PD﹣C的平面角為鈍角,
所以,二面角A﹣PD﹣C的余弦值為﹣
【解析】(Ⅰ)證明:取AD的中點(diǎn)E,連接PE,BE,BD.證明AD⊥平面PBE,然后證明PB⊥AD;
(Ⅱ)以點(diǎn)E為坐標(biāo)原點(diǎn),分別以EA,EB,EP所在直線(xiàn)為x,y,z軸,建立如圖所示空間直角坐標(biāo)系,求出平面APD的一個(gè)法向量為=(0,1,0),平面PDC的一個(gè)法向量為 , 利用向量的數(shù)量積求解二面角A﹣PD﹣C的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線(xiàn)與平面垂直的性質(zhì)的相關(guān)知識(shí),掌握垂直于同一個(gè)平面的兩條直線(xiàn)平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,E是CD延長(zhǎng)線(xiàn)上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線(xiàn)段MG的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線(xiàn)l的極坐標(biāo)方程是ρ(sinθ+cosθ)=3 , 射線(xiàn)OM:θ=與圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的有( )個(gè)
(1). 殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報(bào)精確度越高.
(2). 回歸直線(xiàn)一定過(guò)樣本中心。
(3). 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好。
(4) .甲、乙兩個(gè)模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+ax2﹣3ax+1的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,當(dāng)a,,時(shí),有成立.
Ⅰ求在區(qū)間1上的最大值;
Ⅱ若對(duì)任意的都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線(xiàn)AB與CD所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐,底面為邊長(zhǎng)為2的正三角形,側(cè)棱,
(1)求證:;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓 的離心率為,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)作直線(xiàn),分別交橢圓和圓于相異兩點(diǎn)
(1) 若直線(xiàn)的斜率為1,求的值:
(2) 若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com