【題目】若函數(shù)上的奇函數(shù),且當時,

1)求的解析式;

2)若,,試討論取何值時,零點的個數(shù)最多?最少?

【答案】1;(2)見解析.

【解析】

1)由奇函數(shù)的性質(zhì)得出,并設(shè),可得出,求出的表達式,利用奇函數(shù)的定義得出函數(shù)的表達式,由此可得出函數(shù)上的表達式;

2)令,得出,作出函數(shù)與直線的圖象,結(jié)合圖象得出實數(shù)在不同取值下函數(shù)的零點個數(shù),由此可得出函數(shù)零點最多和最少時,實數(shù)的取值.

1)由于函數(shù)上的奇函數(shù),則;

時,.

綜上所述,;

2)令,得出,作出函數(shù)與直線的圖象如下圖所示:

時,個零點;

時,個零點;

時,個零點;

時,個零點;

時,個零點;

綜上所述,當時,零點的個數(shù)最多;當時,零點的個數(shù)最少.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.

(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;

(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認為“該校學生觀看冬奧會累計時間與性別有關(guān)”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的定義域;

2)若函數(shù)有且僅有一個零點,求實數(shù)m的取值范圍;

3)任取,若不等式對任意恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:),其頻率分布直方圖如下:

(1)網(wǎng)箱產(chǎn)量不低于為“理想網(wǎng)箱”,填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為“理想網(wǎng)箱”的數(shù)目與養(yǎng)殖方法有關(guān):

箱產(chǎn)量

箱產(chǎn)量

合計

舊養(yǎng)殖法

新養(yǎng)殖法

合計

(2)已知舊養(yǎng)殖法個網(wǎng)箱需要成本元,新養(yǎng)殖法個網(wǎng)箱需要增加成本元,該水產(chǎn)品的市場價格為元/,根據(jù)箱產(chǎn)量的頻率分布直方圖(說明:同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表),采用哪種養(yǎng)殖法,請給養(yǎng)殖戶一個較好的建議,并說明理由.

附參考公式及參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若的負整數(shù)解有且只有兩個,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時間著名數(shù)學家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,運用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓 軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運用祖暅原理可求得其體積等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱ABCA1B1C1,側(cè)面ABB1A1為菱形,側(cè)面ACC1A1為正方形,側(cè)面ABB1A1⊥側(cè)面ACC1A1

1)求證:A1B⊥平面AB1C

2)若AB2,∠ABB160°,求三棱錐C1COB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中, 橢圓的中心在坐標原點,其右焦點為,且點 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點分別為,是橢圓上異于的任意一點,直線交橢圓于另一點,直線交直線點, 求證:三點在同一條直線上

查看答案和解析>>

同步練習冊答案