(2008•黃浦區(qū)一模)(理科)△ABC中,已知∠A=
π
3
,邊BC=2
3
,設(shè)∠B=x,△ABC的周長為y.
(1)求函數(shù)y=f(x)的解析式,并寫出函數(shù)的定義域;
(2)求函數(shù)y=f(x)的值域.
分析:(1)由A的度數(shù)及設(shè)出的B的值,利用三角形的內(nèi)角和定理求出C的度數(shù),根據(jù)C大于0列出關(guān)于x的不等式,求出不等式的解集得到x的范圍,即為函數(shù)的定義域,再由BC=a的值,sinA,sinx,及表示出的sinC的值,利用正弦定理表示出b和c,然后三邊相加即可列出y關(guān)于x的函數(shù)解析式;
(2)把(1)得到的函數(shù)解析式利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,合并后,再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由(1)求出的函數(shù)定義域,得出這個(gè)角的范圍,根據(jù)正弦函數(shù)的圖象與性質(zhì)得到正弦函數(shù)的值域,進(jìn)而得到函數(shù)f(x)的值域.
解答:解:(1)△ABC的內(nèi)角和A+B+C=π,且A=
π
3
,B=x,C>0
,
C=
3
-x>0,0<x<
3

由正弦定理,知
2
3
sin
π
3
=
b
sinx
=
c
sin(
3
-x)
,
b=4sinx
c=4sin(
3
-x)

所以y=4sinx+4sin(
3
-x)+2
3
(0<x<
3
)
;

(2)由(1)知,
y=4sinx+4sin(
3
-x)+2
3
(0<x<
3
)

=6sinx+2
3
cosx+2
3

=4
3
sin(x+
π
6
)+2
3
(
π
6
<x+
π
6
6
)

由正弦函數(shù)的圖象知,當(dāng)
π
6
<x+
π
6
6
時(shí),有
1
2
<sin(x+
π
6
)≤1

于是,4
3
<4
3
sin(x+
π
6
)+2
3
≤6
3
,
所以,函數(shù)y=4sinx+4sin(
3
-x)+2
3
(0<x<
3
)
的值域是(4
3
,6
3
]
點(diǎn)評(píng):此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域及值域,第一問利用正弦定理建立了三角形的邊角關(guān)系,表示出b和c來解決問題,第二問利用三角函數(shù)的恒等變換把函數(shù)解析式化為一個(gè)角的正弦函數(shù)是解本問的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•黃浦區(qū)一模)某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為a千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.75元/千瓦時(shí)之間,而居民用戶期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí))經(jīng)測(cè)算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶期望電價(jià)之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r(jià)最低為多少時(shí),可保證電力部門的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•黃浦區(qū)一模)(
x
+
2
4x
)16
的二項(xiàng)展開式中,有理項(xiàng)共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•黃浦區(qū)一模)已知集合A={x|x2-5x+6>0,x∈R},B={x||x-2a|≤2,x∈R},若A∪B=R,則實(shí)數(shù)a的取值范圍是
1
2
≤a≤2
1
2
≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•黃浦區(qū)一模)線性方程組
2x-z=-1
x+2y=0
y+z=2
的增廣矩陣是
20-1-1
1200
0112
20-1-1
1200
0112

查看答案和解析>>

同步練習(xí)冊(cè)答案