【題目】[2019·清遠(yuǎn)期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測(cè)數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)/個(gè) | 5 | 20 | 100 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
【答案】(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型; (II); (III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在 以下.
【解析】
(I)由于散點(diǎn)圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對(duì);兩邊取以為底底而得對(duì)數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計(jì)算公式計(jì)算出回歸直線方程,進(jìn)而化簡為回歸曲線方程.(III)令,解指數(shù)不等式求得溫度的控制范圍.
(I)依散點(diǎn)圖可知,選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型。
(II)因?yàn)?/span>,令,
所以與可看成線性回歸
,
,
所以,
所以,
即,
(III)由即,
解得,
要使得產(chǎn)卵數(shù)不超過50,則溫度控制在 以下。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)該班22名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,在喜歡玩電腦游戲的12人中,有10人認(rèn)為作業(yè)多,2人認(rèn)為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有3人認(rèn)為作業(yè)多,7人認(rèn)為作業(yè)不多.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)列聯(lián)表.
(2)對(duì)于該班學(xué)生,能否在犯錯(cuò)誤概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān)系?
下面臨界值表僅供參考:
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限和所支出的維修費(fèi)(萬元)的幾組對(duì)照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對(duì)呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·吉林期末]一個(gè)袋中裝有6個(gè)大小形狀完全相同的球,球的編號(hào)分別為1,2,3,4,5,6.
(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和為6的概率;
(2)先后有放回地隨機(jī)抽取兩個(gè)球,兩次取的球的編號(hào)分別記為和,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( ) ①f(x)=x2(x≥0);
②f(x)=ex(x∈R);
③f(x)= (x≥0);
④f(x)= .
A.①②③④
B.①②④
C.①③④
D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞).求證:f(x2)-f(x1)>e+2-.注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,有,且當(dāng)時(shí),,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校600名文科學(xué)生參加了4月25日的三調(diào)考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、外語情況,利用隨機(jī)數(shù)表法從抽取100名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,將學(xué)生編號(hào)為000,001,002,…599
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(1)若從第6行第7列的數(shù)開始右讀,請(qǐng)你一次寫出最先抽出的5個(gè)人的編號(hào)(上面是摘自隨機(jī)數(shù)表的第4行到第7行);
(2)抽出的100名學(xué)生的數(shù)學(xué)、外語成績?nèi)缦卤恚?/span>
外語 | ||||
優(yōu) | 良 | 及格 | ||
數(shù)學(xué) | 優(yōu) | 8 | m | 9 |
良 | 9 | n | 11 | |
及格 | 8 | 9 | 11 |
若數(shù)學(xué)成績優(yōu)秀率為35%,求m,n的值;
(3)在外語成績?yōu)榱嫉膶W(xué)生中,已知m≥12,n≥10,求數(shù)學(xué)成績優(yōu)比良的人數(shù)少的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com