【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若三個(gè)內(nèi)角A,B,C成等差數(shù)列,且a= ,b= ,求sinC的值.

【答案】解:∵三個(gè)內(nèi)角A,B,C成等差數(shù)列,
∴2B=A+C,
∵A+B+C=π,
∴3B=π,即B=
∵a= ,b=
∴由正弦定理 得:sinA= = = ,
∵a<b,∴A<B,即A= ,
則sinC=sin(A+B)=sinAcosB+cosAsinB= × + × =
【解析】由三內(nèi)角成等差數(shù)列及內(nèi)角和定理求出B的度數(shù),再由a與b的值,利用正弦定理求出sinA的值,確定出A的度數(shù),由sinC=sin(A+B),利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),將A與B的度數(shù)代入計(jì)算即可求出值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a>0, 方程 有且僅有兩個(gè)不等實(shí)根,且較大的實(shí)根大于3,則實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),被抽取學(xué)生的成績(jī)均不低于160分,且低于185分,如圖是按成績(jī)分組得到的頻率分布直方圖.

(1)為了能選拔出優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)較高的第3組、第4組、第5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(2)在(1)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生由考官A面試,求第4組至少有一名學(xué)生被考官A面試的概.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④
其中正確式子的序號(hào)是(

A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】使函數(shù)y=sin(2x+θ)+ cos(2x+θ)為奇函數(shù),且在[0, ]上是減函數(shù)的θ一個(gè)值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的兩個(gè)焦點(diǎn)為
的曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=x2﹣(1+a)x+a在D內(nèi)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1個(gè)該產(chǎn)品獲利潤(rùn)5元,未售出的產(chǎn)品,每個(gè)虧損3元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160個(gè)該產(chǎn)品,以,單位:個(gè))表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量.

(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);

(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于640元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案