6、已知數(shù)列{an}滿足a1=1,an+1-2an=2n,則an=
n•2n-1
分析:本題考察的知識點(diǎn)是歸納推理,根據(jù)數(shù)列{an}滿足a1=1,an+1-2an=2n,我們不給出數(shù)列的難得到數(shù)列的前幾項(xiàng),分析每一項(xiàng)的值與項(xiàng)數(shù)的關(guān)系,不難給出數(shù)列的通項(xiàng)公式.
解答:解:∵an+1-2an=2n,∴an+1=2n+2an
又∵a1=1=1•21-1,
∴a2=21+2a1=4=2•22-1,
a3=22+2a2=12=3•23-1,
a4=23+2a3=32=4•24-1,
a3=24+2a4=80=5•25-1

可以推斷:
an=n•2n-1
故答案為:n•2n-1
點(diǎn)評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案