α、β為銳角a=sin(α+β),b=sinα+sinβ,則a、b之間關系為( )
A.a>b
B.b>a
C.a=b
D.不確定
【答案】分析:根據α、β為銳角,可得正弦值、余弦值的范圍,從而得到 a=sin(α+β)=sinαcosβ+cosαsinβ<sinα+sinβ=b.
解答:解:由于α、β為銳角,∴0<cosα<1,0<cosβ<1,0<sinα<1,0<sinβ<1.
∴a=sin(α+β)=sinαcosβ+cosαsinβ<sinα+sinβ=b,
故選B.
點評:本題考查銳角的正弦值、余弦值的范圍,不等式的性質,明確銳角的正弦值、余弦值的范圍,是解題的關鍵.