【題目】已知函數(shù)f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:當(dāng)x≤0時f(x)=0,

當(dāng)x>0時, ,

有條件可得, ,

即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴


(2)解:當(dāng)t∈[1,2]時, ,

即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).

∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],

故m的取值范圍是[﹣5,+∞)


【解析】(1)當(dāng)x≤0時得到f(x)=0而f(x)=2,所以無解;當(dāng)x>0時解出f(x)=2求出x即可;(2)由t∈[1,2]時,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范圍即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為(  )
A.24
B.48
C.60
D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求an的通項(xiàng)公式;
(2)設(shè)雙曲線x2 =1的離心率為en , 且e2= ,證明:e1+e2++en

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x2+ax+b,實(shí)數(shù)x1x2滿足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求證:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中實(shí)數(shù)a≠0.
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個公共點(diǎn)且g(x)存在最小值時,記g(x)的最小值為h(a),求h(a)的值域;
(3)若f(x)與g(x)在區(qū)間(a,a+2)內(nèi)均為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項(xiàng)和,則S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn)在圓, ,矩形所在的平面和圓所在的平面互相垂直.

1)求證:平面平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)將代入可得,從而可得函數(shù)的解析式;(2)根據(jù)(1)中所求解析式判斷是實(shí)數(shù)集上的減函數(shù),不等式等價于,解不等式即可得結(jié)果.

(1)∵函數(shù)f(x)=ax(a>0且a≠1)的圖象過點(diǎn)(-2,16),

∴a-2=16

∴a=,即f(x)=,

(2)∵f(x)=為減函數(shù),f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【點(diǎn)睛】

本題主要考查了指數(shù)函數(shù)的解析式和指數(shù)函數(shù)單調(diào)性的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于基礎(chǔ)題.

型】解答
結(jié)束】
19

【題目】2017年APEC會議于11月10日至11日在越南峴港舉行,某研究機(jī)構(gòu)為了了解各年齡層對APEC會議的關(guān)注程度,隨機(jī)選取了100名年齡在[20,45]內(nèi)的市民舉行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分布為[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求選取的市民年齡在[30,35)內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與APEC會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在[35,40)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案