【題目】已知傾斜角為的直線經(jīng)過拋物線:的焦點,與拋物線相交于、兩點,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點的兩條直線、分別交拋物線于點、和、,線段和的中點分別為、.如果直線與的傾斜角互余,求證:直線經(jīng)過一定點.
【答案】(Ⅰ);(2)
【解析】試題分析:
(Ⅰ)設(shè)出直線的方程為,與拋物線方程聯(lián)立消元后可得,結(jié)合拋物線的定義及條件可得,故拋物線的方程為.(Ⅱ)設(shè)直線的斜率為,則由條件可得直線的斜率為,由直線與拋物線的交點可得點,同理點,故,于是可得直線MN的方程為,可得直線過定點.
試題解析:
(Ⅰ)由題意可設(shè)直線的方程為,
由消去y整理得,
設(shè)令,,
則,
由拋物線的定義得,
∴,
∴.
∴拋物線的方程為.
(Ⅱ)設(shè)直線、的傾斜角分別為、,直線的斜率為,則.
∵直線與的傾斜角互余,
∴ ,
∴直線的斜率為.
∴直線的方程為,即,
由消去x整理得,
∴,
∴,
∴點,
以代替點M坐標中的,可得點,
∴ .
∴直線的方程為,
即,
顯然當(dāng),.
∴直線經(jīng)過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,頂部每平方米造價20元,求:
(1)倉庫頂部面積的最大允許值是多少?
(2)為使達到最大,而實際投資又不超過預(yù)算,那么正面鐵柵應(yīng)設(shè)計為多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校想了解高二數(shù)學(xué)成績在學(xué)業(yè)水平考試中的情況,從中隨機抽出人的數(shù)學(xué)成績作為樣本并進行統(tǒng)計,頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | |||
第2組 | |||
第3組 | |||
第4組 | |||
第5組 | |||
合計 |
(1)據(jù)此估計這次參加數(shù)學(xué)考試的高二學(xué)生的數(shù)學(xué)平均成績;
(2)從這五組中抽取人進行座談,若抽取的這人中,恰好有人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,求這人數(shù)學(xué)成績的方差;
(3)從人的樣本中,隨機抽取測試成績在內(nèi)的兩名學(xué)生,設(shè)其測試成績分別為,.
(i)求事件“”的概率;
(ii)求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點為棱的中點,點為線段上一動點.
(Ⅰ)求證:當(dāng)點為線段的中點時,平面;
(Ⅱ)設(shè),試問:是否存在實數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,若是的子集,把中的所有數(shù)的和稱為的“容量”(規(guī)定空集的容量為0),若的容量為奇(偶)數(shù),則稱為的奇(偶)子集,命題①:的奇子集與偶子集個數(shù)相等;命題②:當(dāng)時,的所有奇子集的容量之和與所有偶子集的容量之和相等,則下列說法正確的是( )
A.命題①和命題②都成立B.命題①和命題②都不成立
C.命題①成立,命題②不成立D.命題①不成立,命題②成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家放開計劃生育政策,鼓勵一對夫婦生育2個孩子.在某地區(qū)的100000對已經(jīng)生育了一胎夫婦中,進行大數(shù)據(jù)統(tǒng)計得,有100對第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對,男方愿意生育二孩女方不愿意生育二孩的有對,男方不愿意生育二孩女方愿意生育二孩的有對,其余情形有對,且.現(xiàn)用樣本的頻率來估計總體的概率.
(1)說明“其余情形”指何種具體情形,并求出,,的值;
(2)該地區(qū)為進一步鼓勵生育二孩,實行貼補政策:凡第一胎生育了一孩的夫婦一次性貼補5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補20000元.這種補貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設(shè)為該地區(qū)的一對夫婦享受的生育貼補,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若曲線在點 處的切線方程為.
(Ⅰ)求的解析式;
(Ⅱ)求證:在曲線上任意一點處的切線與直線和所圍成的三角形面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、的坐標分別是,,直線,相交于點,且它們的斜率之積為.
(1)求動點的軌跡方程;
(2)若過點的直線交動點的軌跡于、兩點, 且為線段,的中點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com