將參數(shù)方程數(shù)學(xué)公式(k為參數(shù))化成普通方程是________.

y2=p(x-2p)
分析:求出 y2 的解析式,把 x的解析式代入即可消去參數(shù)k,得到普通方程即 y2=p(x-2p).
解答:由參數(shù)方程消去參數(shù)k可得 y2=p2[-2]=p(x-2p),
故答案為:y2=p(x-2p).
點(diǎn)評(píng):本題考查把參數(shù)方程化為普通方程的方法,消去參數(shù),是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將參數(shù)方程
x=P(k2+
1
k2
y=P(
1
k
-k)
(k為參數(shù))化成普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測(cè)試 題型:044

將下列參數(shù)方程化成普通方程:

(1)(k為參數(shù));(2)(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省龍巖市高三第二次質(zhì)檢數(shù)學(xué)試題(理) 題型:解答題

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。K^S*5U.C#O
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知向量=,變換T的矩陣為A=,平面上的點(diǎn)P(1,1)在變換T
作用下得到點(diǎn)P′(3,3),求A4.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
直線與圓>0)相交于A、B兩點(diǎn),設(shè)
P(-1,0),且|PA|:|PB|=1:2,求實(shí)數(shù)的值
(3)(本小題滿分7分)選修4-5:不等式選講K^S*5U.C#O
對(duì)于xR,不等式|x-1|+|x-2|≥2+2恒成立,試求2+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆福建廈門雙十中學(xué)高三考前熱身理數(shù)試卷 題型:解答題

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某長(zhǎng)方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長(zhǎng)之和等于3,求其對(duì)角線長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案