【題目】某經(jīng)銷(xiāo)商從某養(yǎng)殖場(chǎng)購(gòu)進(jìn)某品種河蟹,并隨機(jī)抽取了 100只進(jìn)行統(tǒng)計(jì),按重量分類(lèi)統(tǒng)計(jì),得到頻率分布直方圖如下:

1)記事件為“從這批河蟹中任取一只,重量不超過(guò)120克”,估計(jì);

2)試估計(jì)這批河蟹的平均重量;

3)該經(jīng)銷(xiāo)商按有關(guān)規(guī)定將該品種河蟹分三個(gè)等級(jí),并制定出銷(xiāo)售單價(jià)如下:

等級(jí)

特級(jí)

一級(jí)

二級(jí)

重量

單價(jià)(元/只)

40

20

10

試估算該經(jīng)銷(xiāo)商以每千克至多花多少元(取整)收購(gòu)這批河蟹,才能獲利?

【答案】1;(2104g;(3)至少

【解析】

1)由頻率分布直方圖求前四個(gè)小矩形面積之和即重量不超過(guò)120克的頻率即為概率的估計(jì)值;

2)根據(jù)頻率分布直方圖性質(zhì),每組小矩形面積乘以該組中間值,再求和即為平均數(shù);

3)根據(jù)三個(gè)等級(jí)個(gè)數(shù)求出總售價(jià),由(2)計(jì)算出總重量,再計(jì)算出平均成本,要求成本不超過(guò)售價(jià)才能獲利.

1)由頻率直方圖可知:河蟹的重量不超過(guò)的頻率,

∴估計(jì)

2)由題估計(jì)平均重量為:

3)設(shè)該經(jīng)銷(xiāo)商收購(gòu)該批河蟹每千克至多元,由(2)可知該100只河蟹的總重量為

由圖可知特級(jí)河蟹有

,一級(jí)河蟹有只,

二級(jí)河蟹有只,

,而,

∴經(jīng)銷(xiāo)商以每千克至多花163元收購(gòu)這批河蟹,才能獲利

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥底面ABCD,PAAB1,AD,點(diǎn)FPB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).

(1)點(diǎn)EBC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;

(2)求證:無(wú)論點(diǎn)EBC邊的何處,都有;

(3)當(dāng)為何值時(shí),與平面所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,線(xiàn)段BC的端點(diǎn)分別在邊、上滑動(dòng),且,現(xiàn)將,分別沿AB,AC折起使點(diǎn)重合,重合后記為點(diǎn),得到三被錐.現(xiàn)有以下結(jié)論:

平面;

②當(dāng)分別為的中點(diǎn)時(shí),三棱錐的外接球的表面積為;

的取值范圍為

④三棱錐體積的最大值為.

則正確的結(jié)論的個(gè)數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線(xiàn)l經(jīng)過(guò)點(diǎn)P,且傾斜角為,圓C的半徑為4.

(1).求直線(xiàn)l的參數(shù)方程及圓C的極坐標(biāo)方程;

(2).試判斷直線(xiàn)l與圓C有位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號(hào)是___________.

①若,則的最大值為;

②若,,是等差數(shù)列的前項(xiàng),則;

③“”的一個(gè)必要不充分條件是“”;

④“”的否定為“,”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),)的周期為,圖象的一個(gè)對(duì)稱(chēng)中心為將函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將所有圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)當(dāng),求實(shí)數(shù)與正整數(shù),使恰有2019個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

1)若,,,求方程在區(qū)間內(nèi)的解集;

2)若點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?/span>,不等式的解集為集合.恒成立,求實(shí)數(shù)的最大值;

3)若函數(shù)滿(mǎn)足“圖像關(guān)于點(diǎn)對(duì)稱(chēng),且在取得最小值”,求、滿(mǎn)足的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓的離心率為,過(guò)橢圓的左焦點(diǎn),且斜率為的直線(xiàn),與以右焦點(diǎn)為圓心,半徑為的圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)線(xiàn)段是橢圓過(guò)右焦點(diǎn)的弦,且,求的面積的最大值以及取最大值時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某地區(qū)某種昆蟲(chóng)產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲(chóng)的產(chǎn)卵數(shù)(個(gè))和溫度)的7組觀(guān)測(cè)數(shù)據(jù),其散點(diǎn)圖如所示:

根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識(shí),可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來(lái)擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線(xiàn)性回歸方程來(lái)擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:

27

74

182

表中,

1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);

2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括),估計(jì)該品種一只昆蟲(chóng)的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,.)

附:對(duì)于一組數(shù)據(jù),,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

同步練習(xí)冊(cè)答案