四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD.已知∠ABC=45°,AB=2,BC=2
,SA=SB=
.
(Ⅰ)證明:SA⊥BC;
(Ⅱ)求直線SD與平面SAB所成角的大小.
解法一:(Ⅰ)作,垂足為
,連結(jié)
,由側(cè)面
底面
,得
底面
.
因為,所以
,
又,故
為等腰直角三角形,
,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知
,依題設(shè)
,
故,由
,
,
,得
,
.
的面積
.
連結(jié)AB,得的面積
設(shè)到平面
的距離為
,由于
,得
,
解得.
設(shè)與平面
所成角為
,則
.
所以,直線與平面
所成的我為
.
解法二:
(Ⅰ)作,垂足為
,連結(jié)
,由側(cè)面
底面
,得
平面
.
因為,所以
.
又,
為等腰直角三角形,
.
如圖,以
為坐標(biāo)原點,
為
軸正向,建立直角坐標(biāo)系
,
,
,
,
,
,
,
,所以
.
(Ⅱ)取中點
,
,
連結(jié),取
中點
,連結(jié)
,
.
,
,
.
,
與平面
內(nèi)兩條相交直線
,
垂直.
所以平面
,
與
的夾角記為
,
與平面
所成的角記為
,則
與
互余.
,
.
,
,
所以,直線與平面
所成的角為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.
(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足.(
)
①求證:對于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點.
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為,求sin
的最大值,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年遼寧省高一第三次月考數(shù)學(xué)試卷 題型:選擇題
在正四棱錐S-ABCD中,E是BC的中點,P點在側(cè)面內(nèi)及其邊界上運(yùn)動,并且總是保持PE
AC.則動點P的軌跡與△SCD組成的相關(guān)圖形最有可能的是(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年龍東南六校高一下學(xué)期期末聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點。
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)設(shè)SD=2CD,求二面角A-EF-D的正切值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com