20.定義在R上的奇函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f(-1)=0,當(dāng)x>0時,xf'(x)-f(x)<0則不等式f(x)<0的解集為(-1,0)∪(1,+∞).

分析 由已知當(dāng)x>0時總有xf′(x)<f(x)成立,可判斷函數(shù)g(x)=$\frac{f(x)}{x}$為減函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,模擬g(x)的圖象,而不等式f(x)<0等價于x•g(x)<0,數(shù)形結(jié)合解不等式組即可

解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,則g(x)的導(dǎo)數(shù)為g′(x)=$\frac{xf'(x)-f(x)}{{x}^{2}}$,
∵當(dāng)x>0時總有xf'(x)-f(x)<0成立,
即當(dāng)x>0時,g′(x)恒小于0,
∴當(dāng)x>0時,函數(shù)g(x)=$\frac{f(x)}{x}$為減函數(shù),
又∵定義在R上的奇函數(shù)f(x),
∴g(-x)=g(x)
∴函數(shù)g(x)為定義域上的偶函數(shù).
又∵g(1)=0,
∴函數(shù)g(x)的圖象性質(zhì)類似如圖:數(shù)形結(jié)合可得
不等式f(x)<0?x•g(x)<0,可得不等式f(x)<0的解集是(-1,0)∪(1,+∞),
故答案為(-1,0)∪(1,+∞).

點評 本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并由函數(shù)的奇偶性和單調(diào)性解不等式,屬于綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a,b,c,且ac=2b2
(Ⅰ)求證:$cosB≥\frac{3}{4}$;
(Ⅱ)若cos(A-C)+cosB=1,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知定義在R上的函數(shù)f(x)滿足f(1-x)+f(1+x)=2,且當(dāng)x>1時,f(x)=$\frac{x}{{e}^{x-2}}$,則曲線y=f(x)在x=0處的切線方程是x+y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知長方體的長、寬、高分別為3,4,5,則體對角線長度為$5\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在等比數(shù)列{an}中,a1+an=82,a3•an-2=81,且數(shù)列{an}的前n項和Sn=121,則此數(shù)列的項數(shù)n等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)={x^2}-\frac{2}{3}a{x^3}({a>0,x∈R})$
(1)求f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)-1有三個零點,求實數(shù)a的取值范圍.
(3)若對?x1∈(2,+∞),?x2∈(1,+∞),使得f(x1)•f(x2)=1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法中
①命題“存在x∈R,2x≤0”的否定是“對任意的x∈R,2x>0”;
②y=x|x|既是奇函數(shù)又是增函數(shù);
③關(guān)于x的不等式a<sin2x+$\frac{2}{si{n}^{2}x}$恒成立,則a的取值范圍是a<3;
其中正確的個數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖一塊長方形區(qū)域ABCD,AD=2,AB=1,在邊AD的中點O處有一個可轉(zhuǎn)動
的探照燈,其照射角∠EOF始終為$\frac{π}{4}$,設(shè)∠AOE=α,探照燈照射在長方形ABCD內(nèi)部區(qū)域的面積為S;
(1)當(dāng)$0≤α<\frac{π}{2}$時,求S關(guān)于α的函數(shù)關(guān)系式;
(2)當(dāng)$0≤α≤\frac{π}{4}$時,求S的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(OE自O(shè)A轉(zhuǎn)到OC,再回到OA,稱“一個來
回”,忽略O(shè)E在OA及OC處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)AB邊上有一點G,且$∠AOG=\frac{π}{6}$,求點G在“一個來回”中被照到的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式; 
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案