【題目】已知函數(shù)的圖象上有且僅有兩個不同的點(diǎn)關(guān)于直線的對稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是________.
【答案】
【解析】
求出直線關(guān)于直線對稱的直線的方程,然后將問題轉(zhuǎn)化為直線與函數(shù)的圖象有兩個交點(diǎn),構(gòu)造函數(shù),將問題轉(zhuǎn)化為直線與函數(shù)的圖象有兩個交點(diǎn),利用數(shù)形結(jié)合思想可求出實(shí)數(shù)的取值范圍.
直線關(guān)于直線對稱的直線的方程為,即,對應(yīng)的函數(shù)為.
所以,直線與函數(shù)的圖象有兩個交點(diǎn).
對于一次函數(shù),當(dāng)時,,且.
則直線與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)不可能為.
當(dāng)時,令,可得,
此時,令.
當(dāng)時,,當(dāng)時,;當(dāng)時,.
此時,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
函數(shù)的極小值為;
當(dāng)時,,當(dāng)時,;當(dāng)時,.
此時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
函數(shù)的極大值為.
作出函數(shù)和函數(shù)的圖象如下圖所示:
由圖象可知,當(dāng)或時,即當(dāng)或時,直線與函數(shù)的圖象有兩個交點(diǎn).
因此,實(shí)數(shù)的取值范圍是.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示,兩點(diǎn)之間的距離為10,且,若將函數(shù)的圖像向右平移個單位長度后所得函數(shù)圖像關(guān)于軸對稱,則的最小值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若將判斷框內(nèi)“”改為關(guān)于的不等式“”且要求輸出的結(jié)果不變,則正整數(shù)的取值是
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家萊布尼茲于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.我國數(shù)學(xué)家、天文學(xué)家明安圖為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計(jì)算開創(chuàng)先河,如圖所示的程序框圖可以用萊布尼茲“關(guān)于的級數(shù)展開式計(jì)算的近似值(其中P表示的近似值)”.若輸入,輸出的結(jié)果P可以表示為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)是橢圓上一點(diǎn),是和的等差中項(xiàng).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若為橢圓的右頂點(diǎn),直線與軸交于點(diǎn),過點(diǎn)的另一直線與橢圓交于、兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線焦點(diǎn)且傾斜角的直線與拋物線交于點(diǎn)的面積為.
(I)求拋物線的方程;
(II)設(shè)是直線上的一個動點(diǎn),過作拋物線的切線,切點(diǎn)分別為直線與直線軸的交點(diǎn)分別為點(diǎn)是以為圓心為半徑的圓上任意兩點(diǎn),求最大時點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的左,右焦點(diǎn)分別為,,點(diǎn)又恰為拋物線的焦點(diǎn),以為直徑的圓與橢圓僅有兩個公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與相交于,兩點(diǎn),記點(diǎn),到直線的距離分別為,,.直線與相交于,兩點(diǎn),記,的面積分別為,.
(。┳C明:的周長為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=ax﹣ex(a∈R),g(x)=.
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com