【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的圖像在處的切線方程;
(2)求函數(shù)的極大值;
(3)若對恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,,,將 沿折起,使平面平面,得到幾何體,如圖2所示.
(1)求證:平面;
(2)求二面角D-AB-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家具公司生產(chǎn)甲、乙兩種書柜,制柜需先制白胚再油漆,每種柜的制造白胚工時數(shù)、油漆工時數(shù)的有關數(shù)據(jù)如下:
工藝要求 | 產(chǎn)品甲 | 產(chǎn)品乙 | 生產(chǎn)能力(工時/天) |
制白胚工時數(shù) | 6 | 12 | 120 |
油漆工時數(shù) | 8 | 4 | 64 |
單位利潤 | 20元 | 24元 |
則該公司合理安排這兩種產(chǎn)品的生產(chǎn),每天可獲得的最大利潤為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A、B為橢圓()和雙曲線的公共頂點,P、Q分別為雙曲線和橢圓上不同于A、B的動點,且(,),設AP、BP、AQ、BQ的斜率分別為、、、.
(1)若,求的值(用a、b的代數(shù)式表示);
(2)求證:;
(3)設、分別為橢圓和雙曲線的右焦點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術·均輸》中有如下問題:“今有五人分十錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.錢B.錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為.
(1)求橢圓的方程;
(2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調查.并把調查結果轉化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶".已知此次調查中甲村的“絕對貧困戶”占甲村貧困戶的.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與村落有關:
甲村 | 乙村 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)某干部決定在這兩村貧困指標處于的貧困戶中,隨機選取戶進行幫扶,用表示所選戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:
表一
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了如下圖所示的散點圖.
(1)根據(jù)散點圖判斷,在推廣期內,與(,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結果及表1中的數(shù)據(jù),求關于的回歸方程,并預測活動推出第8天使用掃碼支付的人次;
(3)推廣期結束后,車隊對乘客的支付方式進行統(tǒng)計,結果如表2
表2
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 | 10% | 60% | 30% |
已知該線路公交車票價為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,估計一名乘客一次乘車的平均費用.
參考數(shù)據(jù):
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中,
參考公式:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com