已知⊙:x2+y2=r2與直線x-2y+2
2
=0相切,求⊙的方程.
考點(diǎn):圓的標(biāo)準(zhǔn)方程,圓的切線方程
專(zhuān)題:直線與圓
分析:由已知條件利用點(diǎn)到直線的距離公式求出圓的半徑,由此能求出圓的方程.
解答: 解:∵⊙:x2+y2=r2與直線x-2y+2
2
=0相切,
∴r=
|2
2
|
1+4
=
2
2
5
,
∴圓⊙的方程為x2+y2=
8
5
點(diǎn)評(píng):本題考查圓的方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若x∈[-
8
,
π
4
],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切,與圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+3q,單價(jià)p與產(chǎn)量q的關(guān)系式為p=29-q,問(wèn)產(chǎn)量q為何值時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果n件產(chǎn)品中任取一件樣品是次品的概率為p(0≤p≤1),則認(rèn)為這批產(chǎn)品中有np件次品.某企業(yè)的統(tǒng)計(jì)資料顯示,產(chǎn)品中發(fā)生次品的概率p與日產(chǎn)量n滿足p=
2
100-n
(n∈N*,1≤n≤98),有已知每生產(chǎn)一件正品可贏利a元,如果生產(chǎn)一件次品,非但不能贏利,還將損失
a
2
元(a>0)
(1)求該企業(yè)日贏利額f(n)的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產(chǎn)量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=x-2與拋物線y2=2x相交于A、B兩點(diǎn),求證:OA⊥OB(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程C:x2+y2-2x-4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y-4=0相交于M、N兩點(diǎn),且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖給出的是計(jì)算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={(x,y)|y=x2},N={(x,y)|y=2x},則M∩N有
 
個(gè)元素.

查看答案和解析>>

同步練習(xí)冊(cè)答案