雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)為F(c,0),以原點(diǎn)為圓心,c為半徑的圓與雙曲線在第二象限的交點(diǎn)為A,若此圓在A點(diǎn)處切線的斜率為
3
3
,則雙曲線C的離心率為( 。
A、
3
+1
B、
6
C、2
3
D、
2
考點(diǎn):雙曲線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(m,n),根據(jù)切線垂直于過切點(diǎn)的半徑算出n=-
3
m.而以點(diǎn)O為圓心,c為半徑的圓方程為x2+y2=c2,將A的坐標(biāo)代入圓方程,算出點(diǎn)A的坐標(biāo),將此代入雙曲線方程,并結(jié)合c2=a2+b2化簡整理,再根據(jù)離心率公式整理得e4-8e2+4=0,解之即可得到該雙曲線的離心率.
解答: 解:設(shè)A的坐標(biāo)為(m,n),可得直線AO的斜率滿足k=-
3
,即n=-
3
m…①
∵以點(diǎn)O為圓心,c為半徑的圓方程為x2+y2=c2
∴將①代入圓方程,得m2+3m2=c2,解得m=-
c
2
,n=
3
2
c
將點(diǎn)A(-
c
2
,
3
2
c)代入雙曲線方程,得
c2
4
a2
-
3
4
c2
b2
=1

化簡得:
1
4
c2b2-
3
4
c2a2=a2b2
∵c2=a2+b2
∴b2=c2-a2代入上式,化簡整理得c4-8c2a2+4a4=0
兩邊都除以a4,整理得e4-8e2+4=0,解之得e2=4+2
3
或e2=4-2
3

∵雙曲線的離心率e>1,∴該雙曲線的離心率e=
3
+1(舍負(fù)).
故選:A.
點(diǎn)評:本題給出雙曲線滿足的條件,求雙曲線的離心率,著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)、直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
1
7
.現(xiàn)有甲、乙兩人從袋中輪流、不放回地摸取1球,甲先取,乙后取,然后甲再取…直到袋中的球取完即終止.若摸出白球,則記2分,若摸出黑球,則記1分.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.用ξ表示甲四次取球獲得的分?jǐn)?shù)之和.
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量ξ的概率分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上的雙曲線的漸近線過點(diǎn)P(2,1),其離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校從高二甲、乙兩個(gè)班中各選6名同掌參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的眾數(shù)是85,乙班學(xué)生成績的平均分為81,則x+y的值為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是依據(jù)某城市年齡在20歲到45歲的居民上網(wǎng)情況調(diào)查而繪制的頻率分布直方圖,現(xiàn)已知年齡在[30,35)、[35,40)、[40,45]的上網(wǎng)人數(shù)呈現(xiàn)遞減的等差數(shù)列分布,則年齡在[35,40)的網(wǎng)民出現(xiàn)的頻率為( 。
A、0.04B、0.06
C、0.2D、0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題,其中真命題的個(gè)數(shù)是( 。
①存在x0∈R,使得sinx0+cosx0=2sin
24
成立;
②對于任意的三個(gè)平面向量
a
b
、
c
,總有(
a
b
)•
c
=
a
•(
b
c
)成立;
③相關(guān)系數(shù)r(|r|≤1),|r|值越大,變量之間的線性相關(guān)程度越高.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,有下列命題:
(1)若數(shù)列{an}的極限存在但不為零,則數(shù)列{Sn}的極限一定不存在;
(2)無窮數(shù)列{S2n}、{S2n-1}的極限均存在,則數(shù)列{Sn}的極限一定存在;
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2•…•Sk=O的充要條件是a1•a2•…•ak=O;
(4)若{an}是等比數(shù)列,則S1•S2•…•Sk=O(k≥2)的充要條件是an+an+1=0.
其中,錯(cuò)誤命題的序號是( 。
A、(1)(2)
B、(2)(3)
C、(3)(4)
D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校高三數(shù)學(xué)學(xué)業(yè)水平測試卷中隨機(jī)抽取部分試卷,對其成績進(jìn)行分析,因某特殊原因,所得的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,則頻率分布直方圖中,從左往右第四個(gè)矩形的面積為(  )
A、
6
25
B、
4
25
C、
6
23
D、
4
23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2012,其前n項(xiàng)和為Sn,若a12-a10=4,則S2012的值等于( 。
A、-2010
B、-2011
C、-2012
D、-2013

查看答案和解析>>

同步練習(xí)冊答案