【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn,點(diǎn)(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和
(3)設(shè)nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.
【答案】(1),bn=3n+2.(2)(3)11
【解析】試題分析:(1)由點(diǎn)在直線上,求得 ,利用 與 的關(guān)系求出 通項(xiàng)公式,由 得 是等差數(shù)列,再算出首項(xiàng)和公差,寫出通項(xiàng)公式;(2)化簡(jiǎn) 的表達(dá)式,采用錯(cuò)位相減法求和;(3)分 為奇數(shù)和偶數(shù),討論 是否成立.
試題解析:(Ⅰ)∵點(diǎn)(n,)在直線y=x+上,∴=n+,即Sn=n2+n,所以6,當(dāng)時(shí), n+5.且6也適合,所以
∵bn+2-2bn+1+bn=0(nN*),∴bn+2-bn+1= bn+1-bn=…= b2-b1.∴數(shù)列{bn}是等差數(shù)列,∵b3=11,它的前9項(xiàng)和為153,設(shè)公差為d,則b1+2d=11,9b1+×d=153,解得b1=5,d=3.∴bn=3n+2.
(Ⅱ)令
則
(Ⅲ) nN*,f(n)==
當(dāng)m為奇數(shù)時(shí),m+15為偶數(shù),則有3(m+15)+2=5(m+5),解得m=11
當(dāng)m為偶數(shù)時(shí),m+15為奇數(shù).若f(m+15)=5f(m)成立, m+15+5=5(3m+2),此時(shí)不成立.
所以當(dāng)m=11時(shí),f(m+15)=5f(m).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,其焦點(diǎn)為.
(1)若點(diǎn),求以為中點(diǎn)的拋物線的弦所在的直線方程;
(2)若互相垂直的直線都經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn)和兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個(gè)元件,壽命為之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在之間的元件中任取個(gè)元件,求事件“恰好有一個(gè)壽命為,一個(gè)壽命為”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(II)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年天貓五一活動(dòng)結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M(fèi)超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對(duì)應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費(fèi)超過3000元的有30000人,試估計(jì)該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元且年齡在的人數(shù);
(2)計(jì)算在五一活動(dòng)中消費(fèi)超過3000元的消費(fèi)者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點(diǎn),.
(Ⅰ)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(Ⅱ)若弦長(zhǎng),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,圓與直線相切,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)任作一直線交橢圓于兩點(diǎn),記,若在線段上取一點(diǎn),使得,試判斷當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)是否在某一定直一上運(yùn)動(dòng)?若是,請(qǐng)求出該定直線的方程;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com